Suppr超能文献

用于有望发生的电化学氧化反应的氢氧化镍基电催化剂:超越水氧化

Nickel Hydroxide-Based Electrocatalysts for Promising Electrochemical Oxidation Reactions: Beyond Water Oxidation.

作者信息

Sun Hainan, Song Sanzhao

机构信息

School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China.

Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.

出版信息

Small. 2024 Aug;20(33):e2401343. doi: 10.1002/smll.202401343. Epub 2024 Mar 20.

Abstract

Transition metal hydroxides have attracted significant research interest for their energy storage and conversion technique applications. In particular, nickel hydroxide (Ni(OH)), with increasing significance, is extensively used in material science and engineering. The past decades have witnessed the flourishing of Ni(OH)-based materials as efficient electrocatalysts for water oxidation, which is a critical catalytic reaction for sustainable technologies, such as water electrolysis, fuel cells, CO reduction, and metal-air batteries. Coupling the electrochemical oxidation of small molecules to replace water oxidation at the anode is confirmed as an effective and promising strategy for realizing the energy-saving production. The physicochemical properties of Ni(OH) related to conventional water oxidation are first presented in this review. Then, recent progress based on Ni(OH) materials for these promising electrochemical reactions is symmetrically categorized and reviewed. Significant emphasis is placed on establishing the structure-activity relationship and disclosing the reaction mechanism. Emerging material design strategies for novel electrocatalysts are also highlighted. Finally, the existing challenges and future research directions are presented.

摘要

过渡金属氢氧化物因其在能量存储和转换技术中的应用而引起了广泛的研究兴趣。特别是氢氧化镍(Ni(OH)),其重要性日益增加,在材料科学与工程领域得到了广泛应用。在过去几十年中,基于氢氧化镍的材料作为水氧化的高效电催化剂蓬勃发展,水氧化是水电解、燃料电池、CO还原和金属空气电池等可持续技术中的关键催化反应。将小分子的电化学氧化耦合以取代阳极的水氧化被确认为实现节能生产的有效且有前景的策略。本综述首先介绍了与传统水氧化相关的氢氧化镍的物理化学性质。然后,对基于氢氧化镍材料在这些有前景的电化学反应方面的最新进展进行了系统分类和综述。重点在于建立结构-活性关系并揭示反应机理。还强调了新型电催化剂的新兴材料设计策略。最后,介绍了现有挑战和未来研究方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验