Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Int Immunopharmacol. 2024 Apr 20;131:111860. doi: 10.1016/j.intimp.2024.111860. Epub 2024 Mar 19.
Rheumatoid arthritis (RA) is a complex disease with a challenging diagnosis, especially in seronegative patients. The aim of this study is to investigate whether the methylation sites associated with the overall immune response in RA can assist in clinical diagnosis, using targeted methylation sequencing technology on peripheral venous blood samples.
The study enrolled 241 RA patients, 30 osteoarthritis patients (OA), and 30 healthy volunteers control (HC). Fifty significant cytosine guanine (CG) sites between undifferentiated arthritis and RA were selected and analyzed using targeted DNA methylation sequencing. Logistic regression models were used to establish diagnostic models for different clinical features of RA, and six machine learning methods (logit model, random forest, support vector machine, adaboost, naive bayes, and learning vector quantization) were used to construct clinical diagnostic models for different subtypes of RA. Least absolute shrinkage and selection operator regression and detrended correspondence analysis were utilized to screen for important CGs. Spearman correlation was used to calculate the correlation coefficient.
The study identified 16 important CG sites, including tumor necrosis factort receptor associated factor 5 (TRAF5) (chr1:211500151), mothers against decapentaplegic homolog 3 (SMAD3) (chr15:67357339), tumor endothelial marker 1 (CD248) (chr11:66083766), lysosomal trafficking regulator (LYST) (chr1:235998714), PR domain zinc finger protein 16 (PRDM16) (chr1:3307069), A-kinase anchoring protein 10 (AKAP10) (chr17:19850460), G protein subunit gamma 7 (GNG7) (chr19:2546620), yes1 associated transcriptional regulator (YAP1) (chr11:101980632), PRDM16 (chr1:3163969), histone deacetylase complex subunit sin3a (SIN3A) (chr15:75747445), prenylated rab acceptor protein 2 (ARL6IP5) (chr3:69134502), mitogen-activated protein kinase kinase kinase 4 (MAP3K4) (chr6:161412392), wnt family member 7A (WNT7A) (chr3:13895991), inhibin subunit beta B (INHBB) (chr2:121107018), deoxyribonucleic acid replication helicase/nuclease 2 (DNA2) (chr10:70231628) and chromosome 14 open reading frame 180 (C14orf180) (chr14:105055171). Seven CG sites showed abnormal changes between the three groups (P < 0.05), and 16 CG sites were significantly correlated with common clinical indicators (P < 0.05). Diagnostic models constructed using different CG sites had an area under the receiver operating characteristic curve (AUC) range of 0.64-0.78 for high-level clinical indicators of high clinical value, with specificity ranging from 0.42 to 0.77 and sensitivity ranging from 0.57 to 0.88. The AUC range for low-level clinical indicators of high clinical value was 0.63-0.72, with specificity ranging from 0.48 to 0.74 and sensitivity ranging from 0.72 to 0.88. Diagnostic models constructed using different CG sites showed good overall diagnostic accuracy for the four subtypes of RA, with an accuracy range of 0.61-0.96, a balanced accuracy range of 0.46-0.94, and an AUC range of 0.46-0.94.
This study identified potential clinical diagnostic biomarkers for RA and provided novel insights into the diagnosis and subtyping of RA. The use of targeted deoxyribonucleic acid (DNA) methylation sequencing and machine learning methods for establishing diagnostic models for different clinical features and subtypes of RA is innovative and can improve the accuracy and efficiency of RA diagnosis.
类风湿关节炎(RA)是一种具有挑战性的复杂疾病,尤其是在血清阴性患者中。本研究旨在通过对外周静脉血样本进行靶向甲基化测序技术,探讨与 RA 整体免疫反应相关的甲基化位点是否有助于临床诊断。
该研究纳入了 241 例 RA 患者、30 例骨关节炎(OA)患者和 30 例健康志愿者对照(HC)。选择并分析了在未分化关节炎和 RA 之间存在差异的 50 个显著的胞嘧啶鸟嘌呤(CG)位点,使用靶向 DNA 甲基化测序。采用逻辑回归模型建立 RA 不同临床特征的诊断模型,并使用六种机器学习方法(logit 模型、随机森林、支持向量机、adaboost、朴素贝叶斯和学习向量量化)建立不同 RA 亚型的临床诊断模型。采用最小绝对收缩和选择算子回归和去趋势对应分析筛选重要的 CG 位点。采用 Spearman 相关系数计算相关系数。
本研究确定了 16 个重要的 CG 位点,包括肿瘤坏死因子受体相关因子 5(TRAF5)(chr1:211500151)、母亲抗 Decapentaplegic 同源物 3(SMAD3)(chr15:67357339)、肿瘤内皮标志物 1(CD248)(chr11:66083766)、溶酶体运输调节剂(LYST)(chr1:235998714)、PR 域锌指蛋白 16(PRDM16)(chr1:3307069)、A-激酶锚定蛋白 10(AKAP10)(chr17:19850460)、G 蛋白亚基 γ7(GNG7)(chr19:2546620)、Yes1 相关转录调节剂(YAP1)(chr11:101980632)、PRDM16(chr1:3163969)、组蛋白去乙酰化酶复合物亚基 sin3a(SIN3A)(chr15:75747445)、 prenylated rab 接受蛋白 2(ARL6IP5)(chr3:69134502)、丝裂原激活蛋白激酶激酶激酶 4(MAP3K4)(chr6:161412392)、wnt 家族成员 7A(WNT7A)(chr3:13895991)、抑制素亚基βB(INHBB)(chr2:121107018)、脱氧核糖核酸复制解旋酶/核酸酶 2(DNA2)(chr10:70231628)和染色体 14 开放阅读框 180(C14orf180)(chr14:105055171)。三个组之间有 7 个 CG 位点显示出异常变化(P < 0.05),16 个 CG 位点与常见临床指标显著相关(P < 0.05)。使用不同 CG 位点构建的诊断模型对于具有高临床价值的高水平临床指标的 AUC 范围为 0.64-0.78,特异性范围为 0.42-0.77,敏感性范围为 0.57-0.88。对于具有高临床价值的低水平临床指标,AUC 范围为 0.63-0.72,特异性范围为 0.48-0.74,敏感性范围为 0.72-0.88。使用不同 CG 位点构建的诊断模型对 RA 的四个亚型均具有较好的整体诊断准确性,准确率范围为 0.61-0.96,平衡准确性范围为 0.46-0.94,AUC 范围为 0.46-0.94。
本研究确定了 RA 的潜在临床诊断生物标志物,并为 RA 的诊断和亚型分类提供了新的见解。使用靶向脱氧核糖核酸(DNA)甲基化测序和机器学习方法建立不同临床特征和 RA 亚型的诊断模型具有创新性,可提高 RA 诊断的准确性和效率。