Suppr超能文献

全基因组 DNA 甲基化对来氟米特治疗类风湿关节炎患者反应的预后价值。

The prognostic value of whole-genome DNA methylation in response to Leflunomide in patients with Rheumatoid Arthritis.

机构信息

Department of Clinical Epidemiology and Evidence-Based Medicine, the First Affiliated Hospital, China Medical University, Shenyang, China.

Department of Rheumatology, The First Affiliated Hospital, China Medical University, Shenyang, China.

出版信息

Front Immunol. 2023 Sep 7;14:1173187. doi: 10.3389/fimmu.2023.1173187. eCollection 2023.

Abstract

OBJECTIVE

Although Leflunomide (LEF) is effective in treating rheumatoid arthritis (RA), there are still a considerable number of patients who respond poorly to LEF treatment. Till date, few LEF efficacy-predicting biomarkers have been identified. Herein, we explored and developed a DNA methylation-based predictive model for LEF-treated RA patient prognosis.

METHODS

Two hundred forty-five RA patients were prospectively enrolled from four participating study centers. A whole-genome DNA methylation profiling was conducted to identify LEF-related response signatures via comparison of 40 samples using Illumina 850k methylation arrays. Furthermore, differentially methylated positions (DMPs) were validated in the 245 RA patients using a targeted bisulfite sequencing assay. Lastly, prognostic models were developed, which included clinical characteristics and DMPs scores, for the prediction of LEF treatment response using machine learning algorithms.

RESULTS

We recognized a seven-DMP signature consisting of cg17330251, cg19814518, cg20124410, cg21109666, cg22572476, cg23403192, and cg24432675, which was effective in predicting RA patient's LEF response status. In the five machine learning algorithms, the support vector machine (SVM) algorithm provided the best predictive model, with the largest discriminative ability, accuracy, and stability. Lastly, the AUC of the complex model(the 7-DMP scores with the lymphocyte and the diagnostic age) was higher than the simple model (the seven-DMP signature, AUC:0.74 vs 0.73 in the test set).

CONCLUSION

In conclusion, we constructed a prognostic model integrating a 7-DMP scores with the clinical patient profile to predict responses to LEF treatment. Our model will be able to effectively guide clinicians in determining whether a patient is LEF treatment sensitive or not.

摘要

目的

虽然来氟米特(LEF)在治疗类风湿关节炎(RA)方面有效,但仍有相当数量的患者对 LEF 治疗反应不佳。迄今为止,很少有预测 LEF 疗效的生物标志物被发现。在此,我们探索并开发了一种基于 DNA 甲基化的预测模型,用于预测 LEF 治疗 RA 患者的预后。

方法

从四个参与研究的中心前瞻性招募了 245 例 RA 患者。通过比较使用 Illumina 850k 甲基化芯片的 40 个样本,进行全基因组 DNA 甲基化谱分析,以确定与 LEF 相关的反应特征。此外,在 245 例 RA 患者中使用靶向亚硫酸氢盐测序检测验证差异甲基化位置(DMPs)。最后,使用机器学习算法,基于临床特征和 DMPs 评分,开发了用于预测 LEF 治疗反应的预后模型。

结果

我们识别出一个由 cg17330251、cg19814518、cg20124410、cg21109666、cg22572476、cg23403192 和 cg24432675 组成的七个 DMP 特征,可有效预测 RA 患者对 LEF 的反应状态。在五种机器学习算法中,支持向量机(SVM)算法提供了最佳预测模型,具有最大的判别能力、准确性和稳定性。最后,复杂模型(7-DMP 评分与淋巴细胞和诊断年龄)的 AUC 高于简单模型(七个 DMP 特征,AUC:测试集中为 0.74 对 0.73)。

结论

总之,我们构建了一个包含 7-DMP 评分和临床患者特征的预后模型,用于预测对 LEF 治疗的反应。我们的模型将能够有效地指导临床医生确定患者是否对 LEF 治疗敏感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8482/10513488/607eaaea85d0/fimmu-14-1173187-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验