Suppr超能文献

使用常规放射组学和迁移学习特征对乳腺肿瘤超声图像进行良性和恶性分类:一项多中心回顾性研究。

Benign and malignant classification of breast tumor ultrasound images using conventional radiomics and transfer learning features: A multicenter retrospective study.

机构信息

College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.

College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China; Department of Nuclear Medicine, General Hospital of Northern Theatre Command, Shenyang, China.

出版信息

Med Eng Phys. 2024 Mar;125:104117. doi: 10.1016/j.medengphy.2024.104117. Epub 2024 Feb 15.

Abstract

This study aims to establish an effective benign and malignant classification model for breast tumor ultrasound images by using conventional radiomics and transfer learning features. We collaborated with a local hospital and collected a base dataset (Dataset A) consisting of 1050 cases of single lesion 2D ultrasound images from patients, with a total of 593 benign and 357 malignant tumor cases. The experimental approach comprises three main parts: conventional radiomics, transfer learning, and feature fusion. Furthermore, we assessed the model's generalizability by utilizing multicenter data obtained from Datasets B and C. The results from conventional radiomics indicated that the SVM classifier achieved the highest balanced accuracy of 0.791, while XGBoost obtained the highest AUC of 0.854. For transfer learning, we extracted deep features from ResNet50, Inception-v3, DenseNet121, MNASNet, and MobileNet. Among these models, MNASNet, with 640-dimensional deep features, yielded the optimal performance, with a balanced accuracy of 0.866, AUC of 0.937, sensitivity of 0.819, and specificity of 0.913. In the feature fusion phase, we trained SVM, ExtraTrees, XGBoost, and LightGBM with early fusion features and evaluated them with weighted voting. This approach achieved the highest balanced accuracy of 0.964 and AUC of 0.981. Combining conventional radiomics and transfer learning features demonstrated clear advantages over using individual features for breast tumor ultrasound image classification. This automated diagnostic model can ease patient burden and provide additional diagnostic support to radiologists. The performance of this model encourages future prospective research in this domain.

摘要

本研究旨在通过使用常规放射组学和迁移学习特征为乳腺肿瘤超声图像建立有效的良性和恶性分类模型。我们与当地一家医院合作,收集了一个基础数据集(数据集 A),其中包含 1050 例来自患者的单病灶 2D 超声图像,共有 593 例良性和 357 例恶性肿瘤病例。实验方法包括常规放射组学、迁移学习和特征融合三个主要部分。此外,我们利用来自数据集 B 和 C 的多中心数据评估了模型的泛化能力。常规放射组学的结果表明,SVM 分类器的平衡准确率最高,为 0.791,而 XGBoost 的 AUC 最高,为 0.854。对于迁移学习,我们从 ResNet50、Inception-v3、DenseNet121、MNASNet 和 MobileNet 中提取了深度特征。在这些模型中,具有 640 维深度特征的 MNASNet 表现最佳,其平衡准确率为 0.866,AUC 为 0.937,敏感性为 0.819,特异性为 0.913。在特征融合阶段,我们使用 SVM、ExtraTrees、XGBoost 和 LightGBM 训练了早期融合特征,并使用加权投票对其进行了评估。该方法的平衡准确率最高,为 0.964,AUC 为 0.981。将常规放射组学和迁移学习特征结合使用,与单独使用特征相比,在乳腺肿瘤超声图像分类方面具有明显优势。该自动诊断模型可以减轻患者负担,并为放射科医生提供额外的诊断支持。该模型的性能鼓励在该领域进行未来的前瞻性研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验