Suppr超能文献

任务空间中不确定异构欧拉-拉格朗日系统基于神经网络的预定义时间二分编队跟踪控制

Neural network-based predefined-time bipartite formation tracking control of uncertain heterogeneous Euler-Lagrange systems in task space.

作者信息

Zhang Xiao-Yu, Han Tao, Xiao Bo, Yan Huaicheng

机构信息

School of Electrical Engineering and Automation, Hubei Normal University, Huangshi 435005, PR China.

School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China.

出版信息

ISA Trans. 2024 May;148:358-366. doi: 10.1016/j.isatra.2024.03.013. Epub 2024 Mar 16.

Abstract

The main problem addressed in this paper is the task-space bipartite formation tracking problem of uncertain heterogeneous Euler-Lagrange systems in predefined time. To solve this problem, an effective hierarchical predefined-time control algorithm is designed. This algorithm utilizes a non-singular sliding surface, allowing for the adjustment of the upper bound of the settling time as a flexible parameter. Key components of the proposed approach include an estimator for the leader's states and a controller tailored to the formation problem. To mitigate the effects of dynamic uncertainties in the system, the radial basis function neural network is integrated into the methodology. Finally, the effectiveness and validity of the proposed algorithm are demonstrated through numerical simulations, showcasing their practical applicability and efficacy.

摘要

本文所解决的主要问题是预定义时间内不确定异构欧拉 - 拉格朗日系统的任务空间二分形编队跟踪问题。为解决此问题,设计了一种有效的分层预定义时间控制算法。该算法利用非奇异滑模面,可将调节时间上限作为一个灵活参数进行调整。所提方法的关键组成部分包括领导者状态估计器和针对编队问题定制的控制器。为减轻系统中动态不确定性的影响,将径向基函数神经网络集成到该方法中。最后,通过数值仿真证明了所提算法的有效性和正确性,展示了其实际适用性和功效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验