School of Life Science, Tsinghua University, Beijing, 100084, China.
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
Nat Commun. 2024 Mar 20;15(1):2492. doi: 10.1038/s41467-024-46845-0.
Biosynthetic enzymes evolutionarily gain novel functions, thereby expanding the structural diversity of natural products to the benefit of host organisms. Diels-Alderases (DAs), functionally unique enzymes catalysing [4 + 2] cycloaddition reactions, have received considerable research interest. However, their evolutionary mechanisms remain obscure. Here, we investigate the evolutionary origins of the intermolecular DAs in the biosynthesis of Moraceae plant-derived Diels-Alder-type secondary metabolites. Our findings suggest that these DAs have evolved from an ancestor functioning as a flavin adenine dinucleotide (FAD)-dependent oxidocyclase (OC), which catalyses the oxidative cyclisation reactions of isoprenoid-substituted phenolic compounds. Through crystal structure determination, computational calculations, and site-directed mutagenesis experiments, we identified several critical substitutions, including S348L, A357L, D389E and H418R that alter the substrate-binding mode and enable the OCs to gain intermolecular DA activity during evolution. This work provides mechanistic insights into the evolutionary rationale of DAs and paves the way for mining and engineering new DAs from other protein families.
生物合成酶在进化过程中获得新的功能,从而扩展了天然产物的结构多样性,使宿主生物体受益。Diels-Alderases(DAs)是一种具有独特功能的酶,能够催化[4+2]环加成反应,因此受到了广泛的关注。然而,它们的进化机制仍然不清楚。在这里,我们研究了 Moraceae 植物衍生的 Diels-Alder 型次生代谢物生物合成中分子间 DAs 的进化起源。我们的研究结果表明,这些 DAs 是从一个祖先中进化而来的,该祖先作为黄素腺嘌呤二核苷酸(FAD)依赖性氧化环化酶(OC)发挥作用,催化异戊二烯取代酚类化合物的氧化环化反应。通过晶体结构测定、计算计算和定点突变实验,我们确定了几个关键的取代,包括 S348L、A357L、D389E 和 H418R,这些取代改变了底物结合模式,使 OC 在进化过程中获得了分子间 DA 活性。这项工作为 DAs 的进化原理提供了机制上的见解,并为从其他蛋白质家族中挖掘和工程新的 DAs 铺平了道路。