Suppr超能文献

水盐浓度对锌离子电池中凝胶电解质电化学性能的影响

Water and Salt Concentration-Dependent Electrochemical Performance of Hydrogel Electrolytes in Zinc-Ion Batteries.

作者信息

Zhu Di, Li Jing, Zheng Zhi, Ye Songbo, Pan Yuqi, Wu Jiacheng, She Fangxin, Lai Leo, Zhou Zihan, Chen Jiaxiang, Li Hao, Wei Li, Chen Yuan

机构信息

School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia.

Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan.

出版信息

ACS Appl Mater Interfaces. 2024 Apr 3;16(13):16175-16185. doi: 10.1021/acsami.3c19112. Epub 2024 Mar 20.

Abstract

Zinc-ion batteries (ZIBs) are promising energy storage devices with safe, nonflammable electrolytes and abundant, low-cost electrode materials. Their practical applications are hampered by various water-related undesirable reactions, such as the hydrogen evolution reaction (HER), corrosion of zinc metal, and water-induced decay of cathode materials. Polymer hydrogel electrolytes were used to control these reactions. However, salt, water, and polymeric backbones intervene in polymer hydrogels, and currently, there are no systematic studies on how salt and water concentrations synergistically affect polymer hydrogels' electrochemical performance. Here, we used an in situ polymerization method to synthesize polyacrylamide (PAM) hydrogels with varied Zn(ClO) (0.5 to 2.0 mol kg) and water (40 to 90 wt %) concentrations. Their electrochemical performances in Zn||Ti half-cells, Zn||Zn symmetrical cells, and Zn||VO full cells have been comprehensively evaluated. Although the ionic conductivity of electrolytes increases with the salt concentration, a high salt concentration of 2.0 mol kg with more Zn solvated HO would induce more severe HER and Zn corrosion at the electrolyte/electrode interfaces. A narrow window of the water concentration at 70-80 wt % is optimal to balance needs for achieving a high ionic conductivity and restricting water-related undesirable reactions. The chemically more active water counts roughly 64.1-73.1 wt % of the total water in electrolytes. PAM hydrogel electrolyte with 1.0 mol kg Zn(ClO) and 80 wt % water enables 1200 h of stable cycling in a Zn||Zn symmetric cell and 99.24% of Coulombic efficiency in a Zn||Ti half-cell. Due to the water-induced decay of VO, the electrolyte with 70 wt % water delivers the best performance in a Zn||VO full cell, which can retain 73.7% of its initial capacity after 400 charge/discharge cycles. Our results show that achieving precise control of salt and water concentrations of hydrogel electrolytes in their optimal windows to reduce the fraction of chemically more active water while retaining high ionic conductivity is essential to enabling high-performance ZIBs.

摘要

锌离子电池(ZIBs)是很有前景的储能装置,具有安全、不易燃的电解质以及丰富、低成本的电极材料。其实际应用受到各种与水相关的不良反应的阻碍,如析氢反应(HER)、锌金属腐蚀以及水导致的阴极材料降解。聚合物水凝胶电解质被用于控制这些反应。然而,盐、水和聚合物主链会对聚合物水凝胶产生影响,目前对于盐和水浓度如何协同影响聚合物水凝胶的电化学性能尚无系统研究。在此,我们采用原位聚合法合成了不同Zn(ClO)(0.5至2.0 mol kg)和水(40至90 wt%)浓度的聚丙烯酰胺(PAM)水凝胶。全面评估了它们在Zn||Ti半电池、Zn||Zn对称电池和Zn||VO全电池中的电化学性能。尽管电解质的离子电导率随盐浓度增加而提高,但2.0 mol kg的高盐浓度以及更多被Zn溶剂化的HO会在电解质/电极界面引发更严重的HER和Zn腐蚀。70 - 80 wt%的窄水浓度窗口最适合平衡实现高离子电导率和限制与水相关的不良反应的需求。化学活性较高的水约占电解质中总水量的64.1 - 73.1 wt%。含有1.0 mol kg Zn(ClO)和80 wt%水的PAM水凝胶电解质在Zn||Zn对称电池中可实现1200小时的稳定循环,在Zn||Ti半电池中的库仑效率为99.24%。由于VO因水导致的降解,含70 wt%水的电解质在Zn||VO全电池中表现最佳,在400次充放电循环后可保留其初始容量的73.7%。我们的结果表明,在最佳窗口内精确控制水凝胶电解质的盐和水浓度,以减少化学活性较高的水的比例,同时保持高离子电导率,对于实现高性能ZIBs至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验