Suppr超能文献

神经外科重症监护病房内严重急性脑损伤患者气管切开必要性预测列线图:一项回顾性队列研究

A nomogram for predicting the necessity of tracheostomy after severe acute brain injury in patients within the neurosurgery intensive care unit: A retrospective cohort study.

作者信息

Gao Liqin, Chang Yafen, Lu Siyuan, Liu Xiyang, Yao Xiang, Zhang Wei, Sun Eryi

机构信息

Department of Neurosurgical Intensive Care Unit, Affiliated People's Hospital of Jiangsu University, ZhenJiang, Jiangsu Province, 212002, China.

Department of Radiology, Affiliated People's Hospital of Jiangsu University, ZhenJiang, Jiangsu Province, 212002, China.

出版信息

Heliyon. 2024 Mar 9;10(6):e27416. doi: 10.1016/j.heliyon.2024.e27416. eCollection 2024 Mar 30.

Abstract

OBJECTIVE

This retrospective study was aimed to develop a predictive model for assessing the necessity of tracheostomy (TT) in patients admitted to the neurosurgery intensive care unit (NSICU).

METHOD

We analyzed data from 1626 NSICU patients with severe acute brain injury (SABI) who were admitted to the Department of NSICU at the Affiliated People's Hospital of Jiangsu University between January 2021 and December 2022. Data of the patients were retrospectively obtained from the clinical research data platform. The patients were randomly divided into training (70%) and testing (30%) cohorts. The least absolute shrinkage and selection operator (LASSO) regression identified the optimal predictive features. A multivariate logistic regression model was then constructed and represented by a nomogram. The efficacy of the model was evaluated based on discrimination, calibration, and clinical utility.

RESULTS

The model highlighted six predictive variables, including the duration of NSICU stay, neurosurgery, orotracheal intubation time, Glasgow Coma Scale (GCS) score, systolic pressure, and respiration rate. Receiver operating characteristic (ROC) analysis of the nomogram yielded area under the curve (AUC) values of 0.854 (95% confidence interval [CI]: 0.822-0.886) for the training cohort and 0.865 (95% CI: 0.817-0.913) for the testing cohort, suggesting commendable differential performance. The predictions closely aligned with actual observations in both cohorts. Decision curve analysis demonstrated that the numerical model offered a favorable net clinical benefit.

CONCLUSION

We developed a novel predictive model to identify risk factors for TT in SABI patients within the NSICU. This model holds the potential to assist clinicians in making timely surgical decisions concerning TT.

摘要

目的

本回顾性研究旨在建立一种预测模型,用于评估神经外科重症监护病房(NSICU)患者气管切开术(TT)的必要性。

方法

我们分析了2021年1月至2022年12月期间在江苏大学附属人民医院NSICU住院的1626例重症急性脑损伤(SABI)患者的数据。患者数据通过回顾性研究从临床研究数据平台获取。患者被随机分为训练组(70%)和测试组(30%)。最小绝对收缩和选择算子(LASSO)回归确定了最佳预测特征。然后构建多因素逻辑回归模型并用列线图表示。基于区分度、校准度和临床实用性对模型的有效性进行评估。

结果

该模型突出了六个预测变量,包括NSICU住院时间、神经外科手术、口气管插管时间、格拉斯哥昏迷量表(GCS)评分、收缩压和呼吸频率。列线图的受试者工作特征(ROC)分析得出,训练组曲线下面积(AUC)值为0.854(95%置信区间[CI]:0.822 - 0.886),测试组为0.865(95%CI:0.817 - 0.913),表明具有良好的区分性能。两个队列中的预测结果与实际观察结果密切相符。决策曲线分析表明,该数值模型具有良好的净临床效益。

结论

我们开发了一种新型预测模型,以识别NSICU中SABI患者TT的危险因素。该模型有可能帮助临床医生及时做出关于TT的手术决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c5/10951500/b3746289cc8e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验