Suppr超能文献

一种用于脑机接口技术的基于超材料单元胞的贴片天线。

A metamaterial unit-cell based patch radiator for brain-machine interface technology.

作者信息

Mainul Emtiaz Ahmed, Hossain Md Faruque

机构信息

Department of Electronics and Communication Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh.

出版信息

Heliyon. 2024 Mar 11;10(6):e27775. doi: 10.1016/j.heliyon.2024.e27775. eCollection 2024 Mar 30.

Abstract

This paper presents a novel approach to the design of a brain implantable antenna tailored for brain-machine interface (BMI) technology. The design is based on a U-shaped unit-cell metamaterial (MTM), introducing innovative features to enhance performance and address specific challenges associated with BMI applications. The motivation behind the use of the unit-cell structure is to elongate the electric path within the antenna patch, diverging from a reliance on the electrical properties of the MTM. Consequently, the unit cell is connected to an inset-fed transmission line and shorted to the ground. This configuration serves the dual purpose of reducing the size of the antenna and enabling resonance at the 2.442 GHz band within a seven-layer brain phantom. The antenna is designed using a FR-4 substrate ( = 4.3 and tan δ = 0.025) of 1.5 mm thickness, and it is coated with a biocompatible polyamide material ( = 4.3 and tan δ = 0.004) of 0.05 mm thickness. The proposed antenna achieves a compact dimension of 20 × 20 × 1.6 (0.338 × 0.338 × 0.027 ) and demonstrates a high bandwidth of 974 MHz with its gain of -14.6 dBi in the 2.442 GHz band. It also exhibits a matched impedance of 49.41-j1.32 Ω in the implantable condition, corresponding to a 50 Ω source impedance. In comparison to a selection of relevant research works, the proposed antenna has a low specific absorption rate (SAR) of 218 W/kg and 68 W/kg at 1g and 10g brain tissue standards, respectively. An antenna prototype has been fabricated and measured for return loss in both free space and in-vivo conditions using sheep's brain. The measurement results are found to be in close agreement with the simulation results for both conditions, showing the practical applicability of the proposed antenna for BMI applications.

摘要

本文提出了一种新颖的方法来设计一种专为脑机接口(BMI)技术定制的可植入大脑的天线。该设计基于一个U形单元胞超材料(MTM),引入了创新特性以提高性能并应对与BMI应用相关的特定挑战。使用单元胞结构的动机是延长天线贴片内的电流路径,这与依赖MTM的电学特性不同。因此,单元胞连接到一个嵌入式馈电传输线并接地。这种配置具有双重目的,即减小天线尺寸并在七层脑模型中实现2.442 GHz频段的谐振。该天线采用厚度为1.5 mm的FR-4基板(εr = 4.3,tan δ = 0.025)设计,并涂覆有厚度为0.05 mm的生物相容性聚酰胺材料(εr = 4.3,tan δ = 0.004)。所提出的天线实现了20×20×1.6 mm³(0.338×0.338×0.027英寸³)的紧凑尺寸,并在2.442 GHz频段展示了974 MHz的高带宽,增益为-14.6 dBi。在可植入条件下,它还表现出49.41 - j1.32 Ω的匹配阻抗,对应于50 Ω的源阻抗。与一系列相关研究工作相比,所提出的天线在1g和10g脑组织标准下的比吸收率(SAR)分别为218 W/kg和68 W/kg。已经制作了一个天线原型,并在自由空间和使用羊脑的体内条件下测量了回波损耗。测量结果在两种条件下都与模拟结果密切吻合,表明所提出的天线在BMI应用中的实际适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fa2/10951611/d21278984466/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验