Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.
University Côte d'Azur, CNRS, Inserm, iBV, Nice, France.
Protein Sci. 2024 Apr;33(4):e4953. doi: 10.1002/pro.4953.
Deciphering the structural effects of gene variants is essential for understanding the pathophysiological mechanisms of genetic diseases. Using a neurodevelopmental disorder called Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) as a genetic disease model, we applied structural bioinformatics and Genetic Code Expansion (GCE) strategies to assess the pathogenic impact of human NR2F1 variants and their binding with known and novel partners. While the computational analyses of the NR2F1 structure delineated the molecular basis of the impact of several variants on the isolated and complexed structures, the GCE enabled covalent and site-specific capture of transient supramolecular interactions in living cells. This revealed the variable quaternary conformations of NR2F1 variants and highlighted the disrupted interplay with dimeric partners and the newly identified co-factor, CRABP2. The disclosed consequence of the pathogenic mutations on the conformation, supramolecular interplay, and alterations in the cell cycle, viability, and sub-cellular localization of the different variants reflect the heterogeneous disease spectrum of BBSOAS and set up novel foundation for unveiling the complexity of neurodevelopmental diseases.
解析基因变异的结构效应对于理解遗传疾病的病理生理机制至关重要。我们以一种称为 Bosch-Boonstra-Schaaf 视神经萎缩综合征 (BBSOAS) 的神经发育障碍疾病为遗传疾病模型,应用结构生物信息学和遗传密码扩展 (GCE) 策略来评估人类 NR2F1 变异体的致病影响及其与已知和新的伙伴的结合。虽然对 NR2F1 结构的计算分析描绘了几个变异体对分离和复合结构影响的分子基础,但 GCE 能够在活细胞中进行共价和位点特异性捕获瞬时超分子相互作用。这揭示了 NR2F1 变异体的可变四级构象,并强调了与二聚体伙伴以及新鉴定的辅因子 CRABP2 的相互作用被破坏。所揭示的致病性突变对不同变异体的构象、超分子相互作用以及细胞周期、活力和亚细胞定位的改变的后果反映了 BBSOAS 的异质疾病谱,并为揭示神经发育疾病的复杂性奠定了新的基础。