Suppr超能文献

基于 ZnO/Ag 纳米花阵列的新型多功能 SERS 微流控传感器,用于无标记超灵敏细菌检测。

A novel multifunctional SERS microfluidic sensor based on ZnO/Ag nanoflower arrays for label-free ultrasensitive detection of bacteria.

机构信息

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

出版信息

Anal Methods. 2024 Apr 4;16(14):2085-2092. doi: 10.1039/d4ay00018h.

Abstract

This study proposes a microfluidic platform for rapid enrichment and ultrasensitive SERS detection of bacteria. The platform comprises ZnO nanoflower arrays decorated with silver nanoparticles to enhance the SERS sensitivity. The ZnO nanoflower array substrate with a 3D reticular columnar structure is prepared using the hydrothermal method. SEM analysis depicts the 3.05 μm gap distribution of the substrate array to intercept the most bacteria in the particle sizes range of 0.5 to 3 μm. Then, silver nanoparticles are deposited on the ZnO nano-array surface by liquid evaporation self-assembly. TEM and SEM analysis indicate nanosize of Ag particles, evenly distributed on the substrate, enhancing the SERS efficiency and improving sensing reproducibility. The probe molecules (R6G) are tested to demonstrate the high SERS activity of the proposed microfluidic sensor. Then, , , , and are selected, demonstrating the sensor's excellent bacterial capture and sensitive recognition capabilities, with a detection limit as low as 10 CFU mL. Additionally, the antibacterial properties of ZnO/Ag heterojunction nanostructures are studied, suggesting their ability to inactivate bacteria. Compared with the traditional Au-enhanced chip, the sensor preparation is easy, safe, reliable, and low-cost. Moreover, the ZnO nano-array exhibits a large specific surface area, high interception ability, stronger and uniform SERS performance, and effective and reliable detection of trace pathogens. This work provides potential future ZnO/Ag microfluidic SERS sensor applications for rapid, unlabeled, and trace pathogens detection in clinical and environmental applications, potentially achieving breakthroughs in early detection, prevention, and treatment.

摘要

本研究提出了一种用于快速富集和超灵敏 SERS 检测细菌的微流控平台。该平台包括用银纳米粒子修饰的 ZnO 纳米花阵列,以提高 SERS 灵敏度。使用水热法制备具有 3D 网状柱状结构的 ZnO 纳米花阵列基底。SEM 分析描述了基底阵列的 3.05μm 间隙分布,以拦截粒径在 0.5 至 3μm 范围内的大多数细菌。然后,通过液体蒸发自组装将银纳米粒子沉积在 ZnO 纳米阵列表面。TEM 和 SEM 分析表明 Ag 颗粒的纳米尺寸均匀分布在基底上,提高了 SERS 效率并提高了传感重复性。测试探针分子(R6G)以证明所提出的微流控传感器具有高 SERS 活性。然后,选择了,,,和,证明了传感器具有出色的细菌捕获和敏感识别能力,检测限低至 10 CFU mL。此外,研究了 ZnO/Ag 异质结纳米结构的抗菌性能,表明它们能够使细菌失活。与传统的 Au 增强芯片相比,传感器制备简单、安全、可靠且成本低廉。此外,ZnO 纳米阵列具有大的比表面积、高拦截能力、更强且均匀的 SERS 性能以及对痕量病原体的有效可靠检测。这项工作为快速、无标记和痕量病原体检测在临床和环境应用中的潜在未来 ZnO/Ag 微流控 SERS 传感器应用提供了可能性,有可能在早期检测、预防和治疗方面取得突破。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验