Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, United States of America.
Center for Community Health Integration, Case Western Reserve University, Cleveland, OH, United States of America.
PLoS One. 2024 Mar 21;19(3):e0296839. doi: 10.1371/journal.pone.0296839. eCollection 2024.
Computer simulation has played a pivotal role in analyzing alternative organ allocation strategies in transplantation. The current approach to producing cohorts of organ donors and candidates for individual-level simulation requires directly re-sampling retrospective data from a transplant registry. This historical data may reflect outmoded policies and practices as well as systemic inequities in candidate listing, limiting contemporary applicability of simulation results. We describe the development of an alternative approach for generating synthetic donors and candidates using hierarchical Bayesian network probability models. We developed two Bayesian networks to model dependencies among 10 donor and 36 candidate characteristics relevant to waitlist survival, donor-candidate matching, and post-transplant survival. We estimated parameters for each model using Scientific Registry of Transplant Recipients (SRTR) data. For 100 donor and 100 candidate synthetic populations generated, proportions for each categorical donor or candidate attribute, respectively, fell within one percentage point of observed values; the interquartile ranges (IQRs) of each continuous variable contained the corresponding SRTR observed median. Comparisons of synthetic to observed stratified distributions demonstrated the ability of the method to capture complex joint variability among multiple characteristics. We also demonstrated how changing two upstream population parameters can exert cascading effects on multiple relevant clinical variables in a synthetic population. Generating synthetic donor and candidate populations in transplant simulation may help overcome critical limitations related to the re-sampling of historical data, allowing developers and decision makers to customize the parameters of these populations to reflect realistic or hypothetical future states.
计算机模拟在分析移植中的替代器官分配策略方面发挥了关键作用。目前,产生器官供体和个体模拟候选人群的方法需要直接从移植登记处重新抽样回顾性数据。这些历史数据可能反映了过时的政策和做法,以及候选名单编制方面的系统性不平等,从而限制了模拟结果的当代适用性。我们描述了一种使用层次贝叶斯网络概率模型生成合成供体和候选者的替代方法。我们开发了两个贝叶斯网络来模拟与候补名单生存、供体-候选者匹配和移植后生存相关的 10 个供体和 36 个候选者特征之间的依赖关系。我们使用 Scientific Registry of Transplant Recipients (SRTR) 数据为每个模型估计参数。对于生成的 100 个供体和 100 个候选者合成人群,每个分类供体或候选者属性的比例分别在观察值的一个百分点内;每个连续变量的四分位间距 (IQR) 包含相应的 SRTR 观察中位数。对合成和观察分层分布的比较表明,该方法能够捕捉多个特征之间复杂的联合变异性。我们还展示了如何改变两个上游人群参数如何对合成人群中的多个相关临床变量产生级联效应。在移植模拟中生成合成供体和候选者人群可能有助于克服与重新抽样历史数据相关的关键限制,从而使开发人员和决策者能够定制这些人群的参数,以反映现实或假设的未来状态。