Suppr超能文献

利用优化策略进行需求侧管理,实现现代电网中电动汽车的高效负荷管理。

Demand side management using optimization strategies for efficient electric vehicle load management in modern power grids.

机构信息

Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Kattankulathur, India.

Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, India.

出版信息

PLoS One. 2024 Mar 21;19(3):e0300803. doi: 10.1371/journal.pone.0300803. eCollection 2024.

Abstract

The Electric Vehicle (EV) landscape has witnessed unprecedented growth in recent years. The integration of EVs into the grid has increased the demand for power while maintaining the grid's balance and efficiency. Demand Side Management (DSM) plays a pivotal role in this system, ensuring that the grid can accommodate the additional load demand without compromising stability or necessitating costly infrastructure upgrades. In this work, a DSM algorithm has been developed with appropriate objective functions and necessary constraints, including the EV load, distributed generation from Solar Photo Voltaic (PV), and Battery Energy Storage Systems. The objective functions are constructed using various optimization strategies, such as the Bat Optimization Algorithm (BOA), African Vulture Optimization (AVOA), Cuckoo Search Algorithm, Chaotic Harris Hawk Optimization (CHHO), Chaotic-based Interactive Autodidact School (CIAS) algorithm, and Slime Mould Algorithm (SMA). This algorithm-based DSM method is simulated using MATLAB/Simulink in different cases and loads, such as residential and Information Technology (IT) sector loads. The results show that the peak load has been reduced from 4.5 MW to 2.6 MW, and the minimum load has been raised from 0.5 MW to 1.2 MW, successfully reducing the gap between peak and low points. Additionally, the performance of each algorithm was compared in terms of the difference between peak and valley points, computation time, and convergence rate to achieve the best fitness value.

摘要

近年来,电动汽车(EV)领域取得了前所未有的增长。电动汽车与电网的融合增加了对电力的需求,同时保持了电网的平衡和效率。需求侧管理(DSM)在这个系统中起着关键作用,确保电网能够适应额外的负载需求,而不会影响稳定性或需要昂贵的基础设施升级。在这项工作中,开发了一种具有适当目标函数和必要约束条件的 DSM 算法,包括电动汽车负载、太阳能光伏(PV)分布式发电和电池储能系统。目标函数使用各种优化策略构建,例如蝙蝠优化算法(BOA)、非洲秃鹫优化算法(AVOA)、布谷鸟搜索算法、混沌哈里斯鹰优化算法(CHHO)、基于混沌的交互式自学学校算法(CIAS)和粘菌算法(SMA)。使用 MATLAB/Simulink 在不同的案例和负载下,如住宅和信息技术(IT)部门负载,对基于算法的 DSM 方法进行了模拟。结果表明,峰值负载已从 4.5MW 降低到 2.6MW,最低负载已从 0.5MW 提高到 1.2MW,成功缩小了峰值和低谷之间的差距。此外,还比较了每种算法在峰谷点差异、计算时间和收敛速度方面的性能,以达到最佳拟合值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d80/10956801/2b5c2e4b95b5/pone.0300803.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验