Suppr超能文献

使用非靶向单细胞 DNA 测序对多人生物混合物进行去卷积,并对分离的供体进行准确的特征描述和鉴定。

Deconvoluting multi-person biological mixtures and accurate characterization and identification of separated contributors using non-targeted single-cell DNA sequencing.

机构信息

Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.

Department of Haematology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.

出版信息

Forensic Sci Int Genet. 2024 Jul;71:103030. doi: 10.1016/j.fsigen.2024.103030. Epub 2024 Mar 13.

Abstract

The genetic characterization and identification of individuals who contributed to biological mixtures are complex and mostly unresolved tasks. These tasks are relevant in various fields, particularly in forensic investigations, which frequently encounters crime scene stains generated by more than one person. Currently, forensic mixture deconvolution is mostly performed subsequent to forensic DNA profiling at the level of the mixed DNA profiles, which comes with several limitations. Some previous studies attempted at separating single cells prior to forensic DNA profiling. However, these approaches are biased at selection of the cells and, due to their targeted DNA analysis on low template DNA, provide incomplete and unreliable forensic DNA profiles. We recently demonstrated the feasibility of performing mixture deconvolution prior to forensic DNA profiling through the utilization of a non-targeted single-cell transcriptome sequencing (scRNA-seq). In addition to individual-specific mixture deconvolution, this approach also allowed accurate characterisation of biological sex, biogeographic ancestry and individual identification of the separated mixture contributors. However, RNA has the forensic disadvantage of being prone to degradation, and sequencing RNA - focussing on coding regions - limits the number of single nucleotide polymorphisms (SNPs) utilized for genetic mixture deconvolution, characterization, and identification. These limitations can be overcome by performing single-cell sequencing on the level of DNA instead of RNA. Here, for the first time, we applied non-targeted single-cell DNA sequencing (scDNA-seq) by applying the scATAC-seq (Assay for Transposase-Accessible Chromatin with sequencing) technique to address the challenges of mixture deconvolution in the forensic context. We demonstrated that scATAC-seq, together with our recently developed De-goulash data analysis pipeline, is capable of deconvoluting complex blood mixtures of five individuals from both sexes with varying biogeographic ancestries. We further showed that our approach achieved correct genetic characterization of the biological sex and the biogeographic ancestry of each of the separated mixture contributors and established their identity. Furthermore, by analysing in-silico generated scATAC-seq data mixtures, we demonstrated successful individual-specific mixture deconvolution of i) highly complex mixtures of 11 individuals, ii) balanced mixtures containing as few as 20 cells (10 per each individual), and iii) imbalanced mixtures with a ratio as low as 1:80. Overall, our proof-of-principle study demonstrates the general feasibility of scDNA-seq in general, and scATAC-seq in particular, for mixture deconvolution, genetic characterization and individual identification of the separated mixture contributors. Furthermore, it shows that compared to scRNA-seq, scDNA-seq detects more SNPs from fewer cells, providing higher sensitivity, that is valuable in forensic genetics.

摘要

个体间生物混合来源的遗传特征和鉴定是一个复杂且尚未完全解决的问题。这些任务在各个领域都具有重要意义,特别是在法医调查中,经常会遇到由不止一个人产生的犯罪现场痕迹。目前,法医混合解析主要是在混合 DNA 谱水平上进行法医 DNA 分析之后进行的,这存在一些局限性。一些先前的研究试图在进行法医 DNA 分析之前分离单细胞。然而,这些方法在细胞选择上存在偏差,并且由于其针对低模板 DNA 的靶向 DNA 分析,提供了不完整和不可靠的法医 DNA 谱。我们最近通过利用非靶向单细胞转录组测序(scRNA-seq)证明了在进行法医 DNA 分析之前进行混合解析的可行性。除了个体特异性混合解析外,该方法还允许准确地对生物性别、生物地理起源和分离混合贡献者进行个体识别。然而,RNA 存在易降解的法医学劣势,并且侧重于编码区域的 RNA 测序限制了用于遗传混合解析、特征描述和识别的单核苷酸多态性(SNP)数量。通过在 DNA 水平上进行单细胞测序可以克服这些局限性。在这里,我们首次应用非靶向单细胞 DNA 测序(scDNA-seq),通过应用 scATAC-seq(带有测序的转座酶可及染色质分析)技术来解决法医背景下的混合解析挑战。我们证明,scATAC-seq 与我们最近开发的 De-goulash 数据分析管道一起,能够解析来自不同性别和不同生物地理起源的五个人的复杂血液混合物。我们进一步表明,我们的方法能够正确地对每个分离的混合贡献者的生物性别和生物地理起源进行遗传特征描述,并确定他们的身份。此外,通过分析计算机生成的 scATAC-seq 数据混合物,我们成功地实现了个体特异性的混合解析,包括:i)11 个人的高度复杂混合物,ii)包含每个个体 20 个细胞(每个个体 10 个)的平衡混合物,和 iii)比例低至 1:80 的不平衡混合物。总体而言,我们的初步研究证明了 scDNA-seq 特别是 scATAC-seq 在混合解析、遗传特征描述和分离混合贡献者的个体识别方面的一般可行性。此外,与 scRNA-seq 相比,scDNA-seq 从更少的细胞中检测到更多的 SNP,提供了更高的灵敏度,这在法医遗传学中很有价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验