Wang Ying Da, Kearney Luke M, Blunt Martin J, Sun Chenhao, Tang Kunning, Mostaghimi Peyman, Armstrong Ryan T
School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, United Kingdom.
Adv Colloid Interface Sci. 2024 Apr;326:103122. doi: 10.1016/j.cis.2024.103122. Epub 2024 Mar 11.
The performance of nano- and micro-porous materials in capturing and releasing fluids, such as during CO geo-storage and water/gas removal in fuel cells and electrolyzers, is determined by their wettability in contact with the solid. However, accurately characterizing wettability is challenging due to spatial variations in dynamic forces, chemical heterogeneity, and surface roughness. In situ measurements can potentially measure wettability locally as a contact angle - the angle a denser phase (e.g water) contacts solid in the presence of a second phase (e.g. hydrogen, air, CO) - but suffer from difficulties in accurately capturing curvatures, contact areas, and contact loops of multiphase fluids. We introduce a novel extended topological method for in situ contact angle measurement and provide a comparative review of current geometric and topological methods, assessing their accuracy on ideal surfaces, porous rocks containing CO, and water in gas diffusion layers. The new method demonstrates higher accuracy and reliability of in situ measurements for uniformly wetting systems compared to previous topological approaches, while geometric measurements perform best for mixed-wetting domains. This study further provides a comprehensive open-source platform for in situ characterization of wettability in porous materials with implications for gas geo-storage, fuel cells and electrolyzers, filtration, and catalysis.
纳米和微孔材料在捕获和释放流体方面的性能,例如在二氧化碳地质封存以及燃料电池和电解槽中的水/气去除过程中,取决于它们与固体接触时的润湿性。然而,由于动力的空间变化、化学不均匀性和表面粗糙度,准确表征润湿性具有挑战性。原位测量有可能局部测量润湿性,即作为接触角——在第二相(例如氢气、空气、二氧化碳)存在的情况下,较致密相(例如水)与固体接触的角度——但在准确捕获多相流体的曲率、接触面积和接触环方面存在困难。我们引入了一种用于原位接触角测量的新型扩展拓扑方法,并对当前的几何和拓扑方法进行了比较综述,评估了它们在理想表面、含二氧化碳的多孔岩石以及气体扩散层中的水上的准确性。与先前的拓扑方法相比,新方法在均匀润湿系统的原位测量中显示出更高的准确性和可靠性,而几何测量在混合润湿区域表现最佳。本研究进一步提供了一个全面的开源平台,用于多孔材料润湿性的原位表征,对气体地质封存、燃料电池和电解槽、过滤及催化具有重要意义。