Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.
Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg 35043, Germany.
Plant Cell. 2024 Jul 2;36(7):2465-2490. doi: 10.1093/plcell/koae085.
Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as in seed and pericarp hormone contents, identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting abscisic acid (ABA) sensitivity. This involved expression of morph-specific transcription factors, hypoxia response, and cell wall remodeling genes, as well as altered ABA metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures.
在环境条件不可预测的栖息地中,植物通常具有多样化的套期保值策略,以确保在更广泛的环境因素变化范围内具有适应性。一个引人注目的例子是生源体(种子和果实)异态性的进化,它最大限度地提高了 Aethionema arabicum(十字花科)中物种的生存能力,在这种植物中,外部和内部触发因素允许在同一植物上产生两种不同的生源体。使用这种二倍体生源体模型,我们在不同温度下对粘性种子(M+种子形态)、分散的不开裂果实(IND 果实形态)和通过果皮(果实外皮)去除从 IND 果实获得的裸露非粘性 M-种子的发芽反应中,鉴定出了不同的分子、生物物理和生理生态机制。对 M+种子、IND 果实和 M-种子的大规模比较转录组和激素分析为它们的不同热反应提供了全面的数据集。种子中特定形态的共表达基因模块以及种子和果皮激素含量的差异,确定了 IND 果皮通过产生影响脱落酸(ABA)敏感性的缺氧来施加种皮休眠的作用。这涉及到形态特异性转录因子、缺氧反应和细胞壁重塑基因的表达,以及改变的 ABA 代谢、运输和信号转导。亲本温度影响 ABA 含量和与 ABA 相关的基因表达,并改变 IND 果皮的生物力学特性。阐明生源体异态性的分子框架可以深入了解发育对全球气候变化的反应。