Suppr超能文献

蛋白质组学全景和机器学习预测原发性免疫性血小板减少症脾切除术后的长期反应。

Proteomics landscape and machine learning prediction of long-term response to splenectomy in primary immune thrombocytopenia.

机构信息

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.

Tianjin Institutes of Health Science, Tianjin, China.

出版信息

Br J Haematol. 2024 Jun;204(6):2418-2428. doi: 10.1111/bjh.19420. Epub 2024 Mar 21.

Abstract

This study aimed to identify key proteomic analytes correlated with response to splenectomy in primary immune thrombocytopenia (ITP). Thirty-four patients were retrospectively collected in the training cohort and 26 were prospectively enrolled as validation cohort. Bone marrow biopsy samples of all participants were collected prior to the splenectomy. A total of 12 modules of proteins were identified by weighted gene co-expression network analysis (WGCNA) method in the developed cohort. The tan module positively correlated with megakaryocyte counts before splenectomy (r = 0.38, p = 0.027), and time to peak platelet level after splenectomy (r = 0.47, p = 0.005). The blue module significantly correlated with response to splenectomy (r = 0.37, p = 0.0031). KEGG pathways analysis found that the PI3K-Akt signalling pathway was predominantly enriched in the tan module, while ribosomal and spliceosome pathways were enriched in the blue module. Machine learning algorithm identified the optimal combination of biomarkers from the blue module in the training cohort, and importantly, cofilin-1 (CFL1) was independently confirmed in the validation cohort. The C-index of CFL1 was >0.7 in both cohorts. Our results highlight the use of bone marrow proteomics analysis for deriving key analytes that predict the response to splenectomy, warranting further exploration of plasma proteomics in this patient population.

摘要

本研究旨在鉴定与原发性免疫性血小板减少症(ITP)脾切除反应相关的关键蛋白质组学分析物。在训练队列中回顾性收集了 34 名患者,前瞻性纳入了 26 名患者作为验证队列。所有参与者的骨髓活检样本均在脾切除术前采集。通过加权基因共表达网络分析(WGCNA)方法在开发队列中鉴定出 12 个蛋白质模块。 tan 模块与脾切除前巨核细胞计数呈正相关(r=0.38,p=0.027),与脾切除后血小板峰值时间呈正相关(r=0.47,p=0.005)。蓝色模块与脾切除术反应显著相关(r=0.37,p=0.0031)。KEGG 通路分析发现,tan 模块主要富集于 PI3K-Akt 信号通路,而蓝色模块富集于核糖体和剪接体通路。机器学习算法从训练队列的蓝色模块中识别出最佳的生物标志物组合,并且,肌动蛋白结合蛋白 1(CFL1)在验证队列中得到了独立验证。CFL1 在两个队列中的 C 指数均>0.7。我们的研究结果强调了骨髓蛋白质组学分析在预测脾切除反应方面的应用,值得进一步探索该患者群体的血浆蛋白质组学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验