Suppr超能文献

通过组学方法拓宽免疫性血小板减少症的研究视野。

Broadening the horizon of immune thrombocytopenia through Omics approaches.

机构信息

Sanquin Research, Department of Experimental Immunohematology, Amsterdam and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.

出版信息

Br J Haematol. 2024 Jun;204(6):2159-2161. doi: 10.1111/bjh.19514. Epub 2024 May 8.

Abstract

Immune thrombocytopenia (ITP) is a highly heterogeneous autoimmune bleeding disorder characterized by low platelet counts due to an immune-mediated platelet destruction and impaired platelet production. The pathophysiology is multifactorial and remains to be fully unravelled. Consequently, disease trajectories and responses to therapeutics, despite the availability of multiple agents, can be unpredictable and differing between patients. There is an urgent need for the identification of diagnostic and therapeutic biomarkers, but this has proven to be challenging to achieve. To shed light on this, two studies in this issue of the British Journal of Haematology have recognized the opportunity of using high-throughput Omics technologies in ITP. Sun et al. performed proteomics, and Li et al. metabolomics, on bone marrow biopsy samples of patients with ITP. This was conducted using mass spectrometry and, due to the generation of large datasets, in combination with machine learning. These studies set the stage for further investigations exploring the high potential of multi-omics technologies in order to shed light on the heterogeneity in ITP, accelerating the path towards a much needed personalized medicine approach. Commentary on: Li et al. Metabolomics profile and machine learning prediction of treatment responses in immune thrombocytopenia: A prospective cohort study. Br J Haematol 2024;204:2405-2417. Commentary on: Sun et al. Proteomics landscape and machine learning prediction of long-term response to splenectomy in primary immune thrombocytopenia. Br J Haematol 2024;204:2418-2428.

摘要

免疫性血小板减少症(ITP)是一种高度异质性的自身免疫性出血性疾病,其特征是由于免疫介导的血小板破坏和血小板生成受损导致血小板计数降低。其病理生理学是多因素的,尚未完全阐明。因此,尽管有多种药物可供使用,但疾病的发展轨迹和对治疗的反应可能是不可预测的,并且在患者之间存在差异。迫切需要识别诊断和治疗的生物标志物,但事实证明这一目标难以实现。为了阐明这一点,本期《英国血液学杂志》中的两项研究已经认识到在 ITP 中使用高通量组学技术的机会。孙等人对 ITP 患者的骨髓活检样本进行了蛋白质组学研究,李等人则进行了代谢组学研究。这些研究使用了质谱法,并由于生成了大量数据集,因此与机器学习相结合。这些研究为进一步探索多组学技术在阐明 ITP 异质性方面的巨大潜力奠定了基础,从而加速了实现急需的个体化医学方法的进程。述评:李等人。代谢组学特征和机器学习预测免疫性血小板减少症的治疗反应:一项前瞻性队列研究。英国血液学杂志 2024;204:2405-2417。述评:孙等人。原发性免疫性血小板减少症脾切除术长期反应的蛋白质组学图谱和机器学习预测。英国血液学杂志 2024;204:2418-2428。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验