Suppr超能文献

基于表达和剪接的多组织转录组全基因组关联研究,按雌激素受体状态鉴定了多个乳腺癌相关基因。

Expression- and splicing-based multi-tissue transcriptome-wide association studies identified multiple genes for breast cancer by estrogen-receptor status.

机构信息

Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA.

Section of Hematology & Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA.

出版信息

Breast Cancer Res. 2024 Mar 21;26(1):51. doi: 10.1186/s13058-024-01809-6.

Abstract

BACKGROUND

Although several transcriptome-wide association studies (TWASs) have been performed to identify genes associated with overall breast cancer (BC) risk, only a few TWAS have explored the differences in estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) breast cancer. Additionally, these studies were based on gene expression prediction models trained primarily in breast tissue, and they did not account for alternative splicing of genes.

METHODS

In this study, we utilized two approaches to perform multi-tissue TWASs of breast cancer by ER subtype: (1) an expression-based TWAS that combined TWAS signals for each gene across multiple tissues and (2) a splicing-based TWAS that combined TWAS signals of all excised introns for each gene across tissues. To perform this TWAS, we utilized summary statistics for ER + BC from the Breast Cancer Association Consortium (BCAC) and for ER- BC from a meta-analysis of BCAC and the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA).

RESULTS

In total, we identified 230 genes in 86 loci that were associated with ER + BC and 66 genes in 29 loci that were associated with ER- BC at a Bonferroni threshold of significance. Of these genes, 2 genes associated with ER + BC at the 1q21.1 locus were located at least 1 Mb from published GWAS hits. For several well-studied tumor suppressor genes such as TP53 and CHEK2 which have historically been thought to impact BC risk through rare, penetrant mutations, we discovered that common variants, which modulate gene expression, may additionally contribute to ER + or ER- etiology.

CONCLUSIONS

Our study comprehensively examined how differences in common variation contribute to molecular differences between ER + and ER- BC and introduces a novel, splicing-based framework that can be used in future TWAS studies.

摘要

背景

虽然已经进行了几项全转录组关联研究(TWAS)来识别与整体乳腺癌(BC)风险相关的基因,但只有少数 TWAS 探讨了雌激素受体阳性(ER+)和雌激素受体阴性(ER-)乳腺癌之间的差异。此外,这些研究基于主要在乳腺组织中训练的基因表达预测模型,并且没有考虑基因的可变剪接。

方法

在这项研究中,我们利用两种方法通过 ER 亚型进行多组织 TWAS 分析:(1)一种基于表达的 TWAS,该方法结合了多个组织中每个基因的 TWAS 信号;(2)一种基于剪接的 TWAS,该方法结合了多个组织中每个基因所有剪接内含子的 TWAS 信号。为了进行这项 TWAS,我们利用了乳腺癌协会联盟(BCAC)中 ER+BC 的汇总统计数据以及 BCAC 和 BRCA1 和 BRCA2 修饰剂调查员联合会(CIMBA)的荟萃分析中 ER- BC 的汇总统计数据。

结果

总共,我们在 86 个基因座中鉴定出与 ER+BC 相关的 230 个基因,在 29 个基因座中鉴定出与 ER- BC 相关的 66 个基因,在 Bonferroni 显著水平下。在这些基因中,与 1q21.1 基因座中的 ER+BC 相关的 2 个基因位于先前发表的 GWAS 命中至少 1 Mb 之外。对于几个研究充分的肿瘤抑制基因,例如 TP53 和 CHEK2,它们通常被认为是通过罕见的、外显率高的突变影响 BC 风险,我们发现,调节基因表达的常见变体可能另外有助于 ER+或 ER-的病因学。

结论

我们的研究全面检查了常见变异如何导致 ER+和 ER- BC 之间的分子差异,并引入了一种新的、基于剪接的框架,可用于未来的 TWAS 研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb83/10958972/dfeb1a71792b/13058_2024_1809_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验