Lin Junjing, Lin Jianchang
Statistical and Quantitative Sciences, Takeda Pharmaceuticals, Cambridge, Massachusetts, USA.
J Biopharm Stat. 2024 Oct;34(6):805-817. doi: 10.1080/10543406.2024.2330212. Epub 2024 Mar 21.
Adaptive designs, such as group sequential designs (and the ones with additional adaptive features) or adaptive platform trials, have been quintessential efficient design strategies in trials of unmet medical needs, especially for generating evidence from global regions. Such designs allow interim decision making and making adjustment to study design when necessary, meanwhile maintaining study integrity and operating characteristics. However, driven by the heightened competitive landscape and the desire to bring effective treatment to patients faster, innovation in the already functional designs is still germane to further propel drug development to a more efficient path. One way to achieve this is by leveraging external real-world data (RWD) in the adaptive designs to support interim or final decision making. In this paper, we propose a novel framework of incorporating external RWD in adaptive design to improve interim and/or final analysis decision making. Within this framework, researchers can prespecify the decision process and choose the timing and amount of borrowing while maintaining objectivity and controlling of type I error. Simulation studies in various scenarios are provided to describe power, type I error, and other performance metrics for interim/final decision making. A case study in non-small cell lung cancer is used for illustration on proposed design framework.
适应性设计,如成组序贯设计(以及具有额外适应性特征的设计)或适应性平台试验,一直是未满足医疗需求试验中典型的高效设计策略,尤其是在从全球各地区获取证据方面。此类设计允许进行中期决策,并在必要时对研究设计进行调整,同时保持研究的完整性和操作特性。然而,在竞争日益激烈的环境以及更快为患者提供有效治疗的愿望推动下,对已然有效的设计进行创新对于进一步推动药物研发走向更高效的路径依然至关重要。实现这一目标的一种方法是在适应性设计中利用外部真实世界数据(RWD)来支持中期或最终决策。在本文中,我们提出了一个在适应性设计中纳入外部RWD的新颖框架,以改进中期和/或最终分析决策。在此框架内,研究人员可以预先指定决策过程,并选择借用数据的时机和数量,同时保持客观性并控制I型错误。提供了各种场景下的模拟研究,以描述中期/最终决策的检验效能、I型错误及其他性能指标。以非小细胞肺癌的案例研究为例来说明所提出的设计框架。