Udomnilobol Udomsak, Dunkoksung Wilasinee, Sakares Watchara, Jianmongkol Suree, Prueksaritanont Thomayant
Chulalongkorn University Drug Discovery and Drug Development Research Center (Chula4DR), Chulalongkorn University, Bangkok, Thailand.
Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
Front Pharmacol. 2024 Mar 7;15:1356273. doi: 10.3389/fphar.2024.1356273. eCollection 2024.
Dabigatran etexilate (DABE) is a clinical probe substrate for studying drug-drug interaction (DDI) through an intestinal P-glycoprotein (P-gp). A recent study, however, has suggested a potentially significant involvement of CYP3A-mediated oxidative metabolism of DABE and its intermediate monoester BIBR0951 in DDI following microdose administration of DABE. In this study, the relative significance of CYP3A- and P-gp-mediated pathways to the overall disposition of DABE has been explored using mechanistic physiologically based pharmacokinetic (PBPK) modeling approach. The developed PBPK model linked DABE with its 2 intermediate (BIBR0951 and BIBR1087) and active (dabigatran, DAB) metabolites, and with all relevant drug-specific properties known to date included. The model was successfully qualified against several datasets of DABE single/multiple dose pharmacokinetics and DDIs with CYP3A/P-gp inhibitors. Simulations using the qualified model supported that the intestinal CYP3A-mediated oxidation of BIBR0951, and not the gut P-gp-mediated efflux of DABE, was a key contributing factor to an observed difference in the DDI magnitude following the micro-versus therapeutic doses of DABE with clarithromycin. Both the saturable CYP3A-mediated metabolism of BIBR0951 and the solubility-limited DABE absorption contributed to the relatively modest nonlinearity in DAB exposure observed with increasing doses of DABE. Furthermore, the results suggested a limited role of the gut P-gp, but an appreciable, albeit small, contribution of gut CYP3A in mediating the DDIs following the therapeutic dose of DABE with dual CYP3A/P-gp inhibitors. Thus, a possibility exists for a varying extent of CYP3A involvement when using DABE as a clinical probe in the DDI assessment, across DABE dose levels.
达比加群酯(DABE)是一种用于通过肠道P-糖蛋白(P-gp)研究药物相互作用(DDI)的临床探针底物。然而,最近的一项研究表明,在微剂量给予DABE后,CYP3A介导的DABE及其中间体单酯BIBR0951的氧化代谢在DDI中可能有显著作用。在本研究中,使用基于生理药代动力学(PBPK)建模方法探讨了CYP3A和P-gp介导的途径对DABE整体处置的相对重要性。所建立的PBPK模型将DABE与其2种中间体(BIBR0951和BIBR1087)及活性(达比加群,DAB)代谢产物联系起来,并纳入了迄今为止已知的所有相关药物特异性特性。该模型已根据DABE单剂量/多剂量药代动力学以及与CYP3A/P-gp抑制剂的DDI的多个数据集成功验证。使用经过验证的模型进行的模拟支持,肠道CYP3A介导的BIBR0951氧化,而非肠道P-gp介导的DABE外排,是观察到的DABE与克拉霉素微剂量与治疗剂量相比后DDI幅度差异的关键因素。BIBR0951的CYP3A介导的饱和代谢和溶解度限制的DABE吸收均导致随着DABE剂量增加,DAB暴露中观察到的相对适度的非线性。此外,结果表明肠道P-gp的作用有限,但肠道CYP3A在DABE与双重CYP3A/P-gp抑制剂治疗剂量后的DDI介导中虽贡献较小但相当可观。因此,在不同DABE剂量水平下将DABE用作DDI评估中的临床探针时,存在CYP3A参与程度不同的可能性。