Suppr超能文献

一种受海洋细菌启发的电化学调控方法,用于从海水和盐湖卤水中连续提取铀。

A marine bacteria-inspired electrochemical regulation for continuous uranium extraction from seawater and salt lake brine.

作者信息

Yang Linsen, Qian Yongchao, Zhang Zhehua, Li Tingyang, Lin Xiangbin, Fu Lin, Zhou Shengyang, Kong Xiang-Yu, Jiang Lei, Wen Liping

机构信息

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China

School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China.

出版信息

Chem Sci. 2024 Feb 23;15(12):4538-4546. doi: 10.1039/d4sc00011k. eCollection 2024 Mar 20.

Abstract

Oceans and salt lakes contain vast amounts of uranium. Uranium recovery from natural water not only copes with radioactive pollution in water but also can sustain the fuel supply for nuclear power. The adsorption-assisted electrochemical processes offer a promising route for efficient uranium extraction. However, competitive hydrogen evolution greatly reduces the extraction capacity and the stability of electrode materials with electrocatalytic activity. In this study, we got inspiration from the biomineralisation of marine bacteria under high salinity and biomimetically regulated the electrochemical process to avoid the undesired deposition of metal hydroxides. The uranium uptake capacity can be increased by more than 20% without extra energy input. In natural seawater, the designed membrane electrode exhibits an impressive extraction capacity of 48.04 mg-U per g-COF within 21 days (2.29 mg-U per g-COF per day). Furthermore, in salt lake brine with much higher salinity, the membrane can extract as much uranium as 75.72 mg-U per g-COF after 32 days (2.37 mg-U per g-COF per day). This study provides a general basis for the performance optimisation of uranium capture electrodes, which is beneficial for sustainable access to nuclear energy sources from natural water systems.

摘要

海洋和盐湖中含有大量的铀。从天然水中回收铀不仅可以应对水中的放射性污染,还能够维持核电的燃料供应。吸附辅助电化学工艺为高效提取铀提供了一条很有前景的途径。然而,竞争性析氢极大地降低了具有电催化活性的电极材料的提取能力和稳定性。在本研究中,我们从高盐度环境下海洋细菌的生物矿化过程中获得灵感,通过仿生手段调控电化学过程,以避免金属氢氧化物的不期望沉积。在无需额外能量输入的情况下,铀的吸附量可提高20%以上。在天然海水中,所设计的膜电极在21天内展现出令人印象深刻的提取能力,达到每克共价有机框架材料吸附48.04毫克铀(每天每克共价有机框架材料吸附2.29毫克铀)。此外,在盐度更高的盐湖卤水中,该膜在32天后每克共价有机框架材料可提取多达75.72毫克铀(每天每克共价有机框架材料吸附2.37毫克铀)。本研究为优化铀捕获电极的性能提供了通用依据,这有利于从天然水系统中可持续地获取核能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fb0/10952061/5276c097a310/d4sc00011k-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验