Petrovskii Stanislav K, Grachova Elena V, Monakhov Kirill Yu
Leibniz Institute of Surface Engineering (IOM) Permoserstr. 15 Leipzig 04318 Germany
Institute of Chemistry, St Petersburg University Universitetskii pr. 26 St. Petersburg 198504 Russia.
Chem Sci. 2024 Feb 26;15(12):4202-4221. doi: 10.1039/d3sc06284h. eCollection 2024 Mar 20.
Bioorthogonal chemistry has enabled scientists to carry out controlled chemical processes in high yields while minimizing hazardous effects. Its extension to the field of polyoxometalates (POMs) could open up new possibilities and new applications in molecular electronics, sensing and catalysis, including inside living cells. However, this comes with many challenges that need to be addressed to effectively implement and exploit bioorthogonal reactions in the chemistry of POMs. In particular, how to protect POMs from the biological environment but make their reactivity selective towards specific bioorthogonal tags (and thereby reduce their toxicity), as well as which bioorthogonal chemistry protocols are suitable for POMs and how reactions can be carried out are questions that we are exploring herein. This perspective conceptualizes and discusses advances in the supramolecular chemistry of POMs, their click chemistry, and POM-based surface engineering to develop innovative bioorthogonal approaches tailored to POMs and to improve POM biological tolerance.
生物正交化学使科学家能够以高产率进行可控的化学过程,同时将有害影响降至最低。将其扩展到多金属氧酸盐(POMs)领域,可能会在分子电子学、传感和催化等领域,包括活细胞内部,开辟新的可能性和新的应用。然而,要在POMs化学中有效实施和利用生物正交反应,还存在许多需要解决的挑战。特别是,如何保护POMs免受生物环境的影响,但使其反应性对特定的生物正交标签具有选择性(从而降低其毒性),以及哪些生物正交化学方案适用于POMs以及如何进行反应,这些都是我们在此探讨的问题。本文从概念上阐述并讨论了POMs超分子化学、其点击化学以及基于POMs的表面工程方面的进展,以开发适合POMs的创新生物正交方法,并提高POMs的生物耐受性。