Suppr超能文献

探索空间、时间和采样如何影响我们测量不同人群基因结构的能力。

Exploring how space, time, and sampling impact our ability to measure genetic structure across populations.

作者信息

Arambepola Rohan, Bérubé Sophie, Freedman Betsy, Taylor Steve M, Prudhomme O'Meara Wendy, Obala Andrew A, Wesolowski Amy

机构信息

Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Batlimore, MD, United States.

Division of Infectious Diseases, Duke University Medical Center, Durham, NC, United States.

出版信息

Front Epidemiol. 2023 Feb 17;3:1058871. doi: 10.3389/fepid.2023.1058871. eCollection 2023.

Abstract

A primary use of malaria parasite genomics is identifying highly related infections to quantify epidemiological, spatial, or temporal factors associated with patterns of transmission. For example, spatial clustering of highly related parasites can indicate foci of transmission and temporal differences in relatedness can serve as evidence for changes in transmission over time. However, for infections in settings of moderate to high endemicity, understanding patterns of relatedness is compromised by complex infections, overall high forces of infection, and a highly diverse parasite population. It is not clear how much these factors limit the utility of using genomic data to better understand transmission in these settings. In particular, further investigation is required to determine which patterns of relatedness we expect to see with high quality, densely sampled genomic data in a high transmission setting and how these observations change under different study designs, missingness, and biases in sample collection. Here we investigate two identity-by-state measures of relatedness and apply them to amplicon deep sequencing data collected as part of a longitudinal cohort in Western Kenya that has previously been analysed to identify individual-factors associated with sharing parasites with infected mosquitoes. With these data we use permutation tests, to evaluate several hypotheses about spatiotemporal patterns of relatedness compared to a null distribution. We observe evidence of temporal structure, but not of fine-scale spatial structure in the cohort data. To explore factors associated with the lack of spatial structure in these data, we construct a series of simplified simulation scenarios using an agent based model calibrated to entomological, epidemiological and genomic data from this cohort study to investigate whether the lack of spatial structure observed in the cohort could be due to inherent power limitations of this analytical method. We further investigate how our hypothesis testing behaves under different sampling schemes, levels of completely random and systematic missingness, and different transmission intensities.

摘要

疟原虫基因组学的一个主要用途是识别高度相关的感染,以量化与传播模式相关的流行病学、空间或时间因素。例如,高度相关寄生虫的空间聚集可表明传播焦点,而相关性的时间差异可作为传播随时间变化的证据。然而,对于中高流行地区的感染,由于复杂感染、总体高感染率和高度多样化的寄生虫种群,对相关性模式的理解受到了影响。尚不清楚这些因素在多大程度上限制了利用基因组数据更好地理解这些地区传播情况的效用。特别是,需要进一步研究来确定在高传播环境中高质量、密集采样的基因组数据预期会出现哪些相关性模式,以及这些观察结果在不同研究设计、数据缺失和样本收集偏差下如何变化。在这里,我们研究了两种状态相同的相关性测量方法,并将其应用于作为肯尼亚西部纵向队列研究一部分收集的扩增子深度测序数据,该队列研究此前已进行分析,以确定与与感染蚊子共享寄生虫相关的个体因素。利用这些数据,我们使用置换检验来评估关于相关性时空模式的几个假设,并与零分布进行比较。我们在队列数据中观察到了时间结构的证据,但没有观察到精细尺度的空间结构。为了探索与这些数据中缺乏空间结构相关的因素,我们使用基于主体的模型构建了一系列简化的模拟场景,该模型根据该队列研究的昆虫学、流行病学和基因组数据进行了校准,以研究队列中观察到的缺乏空间结构是否可能是由于这种分析方法固有的功率限制。我们进一步研究了我们的假设检验在不同采样方案、完全随机和系统缺失水平以及不同传播强度下的表现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2082/10956351/a2bac207ab4c/fepid-03-1058871-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验