Suppr超能文献

冷冻电镜中空气-水界面吸附问题的理论框架与实验解决方案

Theoretical framework and experimental solution for the air-water interface adsorption problem in cryoEM.

作者信息

Kang Joon S, Zhou Xueting, Liu Yun-Tao, Wang Kaituo, Zhou Z Hong

机构信息

Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.

Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.

出版信息

Biophys Rep. 2023 Aug 31;9(4):215-229. doi: 10.52601/bpr.2023.230008.

Abstract

As cryogenic electron microscopy (cryoEM) gains traction in the structural biology community as a method of choice for determining atomic structures of biological complexes, it has been increasingly recognized that many complexes that behave well under conventional negative-stain electron microscopy tend to have preferential orientation, aggregate or simply mysteriously "disappear" on cryoEM grids. However, the reasons for such misbehavior are not well understood, which limits systematic approaches to solving the problem. Here, we have developed a theoretical formulation that explains these observations. Our formulation predicts that all particles migrate to the air-water interface (AWI) to lower the total potential surface energy-rationalizing the use of surfactant, which is a direct solution to reduce the surface tension of the aqueous solution. By performing cryogenic electron tomography (cryoET) on the widely-tested sample, GroEL, we demonstrate that, in a standard buffer solution, nearly all particles migrate to the AWI. Gradually reducing the surface tension by introducing surfactants decreased the percentage of particles exposed to the surface. By conducting single-particle cryoEM, we confirm that suitable surfactants do not damage the biological complex, thus suggesting that they might provide a practical, simple, and general solution to the problem for high-resolution cryoEM. Applying this solution to a real-world AWI adsorption problem involving a more challenging membrane protein, namely, the ClC-1 channel, has resulted in its near-atomic structure determination using cryoEM.

摘要

随着低温电子显微镜(cryoEM)作为确定生物复合物原子结构的首选方法在结构生物学领域获得广泛应用,人们越来越认识到,许多在传统负染电子显微镜下表现良好的复合物,在低温电子显微镜网格上往往会出现优先取向、聚集或神秘“消失”的情况。然而,这种异常行为的原因尚不清楚,这限制了系统解决该问题的方法。在此,我们开发了一种理论公式来解释这些观察结果。我们的公式预测,所有颗粒都会迁移到空气 - 水界面(AWI)以降低总表面势能,这解释了使用表面活性剂的合理性,表面活性剂是降低水溶液表面张力的直接解决方案。通过对经过广泛测试的样品GroEL进行低温电子断层扫描(cryoET),我们证明,在标准缓冲溶液中,几乎所有颗粒都会迁移到AWI。通过引入表面活性剂逐渐降低表面张力,减少了暴露在表面的颗粒百分比。通过进行单颗粒低温电子显微镜(cryoEM)分析,我们证实合适的表面活性剂不会损害生物复合物,因此表明它们可能为高分辨率低温电子显微镜解决该问题提供一种实用、简单且通用的解决方案。将该解决方案应用于涉及更具挑战性的膜蛋白ClC - 1通道的实际AWI吸附问题,已通过低温电子显微镜确定了其近原子结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d0/10951471/7a8a9144a8ff/br-9-4-215-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验