Suppr超能文献

基于镧系 MOFs/甲基纤维素的荧光传感器阵列与深度学习集成的鱼类新鲜度监测。

Integration of lanthanide MOFs/methylcellulose-based fluorescent sensor arrays and deep learning for fish freshness monitoring.

机构信息

College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, PR China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, PR China.

College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.

出版信息

Int J Biol Macromol. 2024 Apr;265(Pt 2):131011. doi: 10.1016/j.ijbiomac.2024.131011. Epub 2024 Mar 20.

Abstract

Preserving fish meat poses a significant challenge due to its high protein and low fat content. This study introduces a novel approach that utilizes a common type of lanthanide metal-organic frameworks (Ln-MOFs), EuMOFs, in combination with 5-fluorescein isothiocyanate (FITC) and methylcellulose (MC) to develop fluorescent sensor arrays for real-time monitoring the freshness of fish meat. The EuMOF-FITC/MC fluorescence films were characterized with excellent fluorescence response, ideal morphology, good mechanical properties, and improved hydrophobicity. The efficacy of the fluorescence sensor array was evaluated by testing various concentrations of spoilage gases (such as ammonia, dimethylamine, and trimethylamine) within a 20-min timeframe using a smartphone-based camera obscura device. This sensor array enables the real-time monitoring of fish freshness, with the ability to preliminarily identify the freshness status of mackerel meat with the naked eye. Furthermore, the study employed four convolutional neural network (CNN) models to enhance the performance of freshness assessment, all of which achieved accuracy levels exceeding 93 %. Notably, the ResNext-101 model demonstrated a particularly high accuracy of 98.97 %. These results highlight the potential of the EuMOF-based fluorescence sensor array, in conjunction with the CNN model, as a reliable and accurate method for real-time monitoring the freshness of fish meat.

摘要

由于鱼肉蛋白质含量高、脂肪含量低,因此保鲜是一个重大挑战。本研究介绍了一种新方法,利用常见的镧系金属有机骨架(Ln-MOFs)EuMOFs 与 5-荧光素异硫氰酸酯(FITC)和甲基纤维素(MC)结合,开发用于实时监测鱼肉新鲜度的荧光传感器阵列。EuMOF-FITC/MC 荧光膜具有优异的荧光响应、理想的形态、良好的机械性能和提高的疏水性。通过使用基于智能手机的暗箱设备在 20 分钟内测试各种浓度的腐败气体(如氨、二甲胺和三甲胺),评估了荧光传感器阵列的功效。该传感器阵列能够实时监测鱼肉的新鲜度,并且能够用肉眼初步识别马鲛鱼肉的新鲜度状态。此外,该研究还采用了四个卷积神经网络(CNN)模型来提高新鲜度评估的性能,所有模型的准确率都超过 93%。值得注意的是,ResNext-101 模型的准确率高达 98.97%。这些结果表明,基于 EuMOF 的荧光传感器阵列与 CNN 模型相结合,是一种可靠且准确的实时监测鱼肉新鲜度的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验