Department of internal medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Department of Rheumatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
RMD Open. 2024 Mar 22;10(1):e003715. doi: 10.1136/rmdopen-2023-003715.
This study aims to establish a reliable prediction model of progressive fibrosing interstitial lung disease (PF-ILD) in patients with systemic sclerosis (SSc)-ILD, to achieve early risk stratification and to help better in preventing disease progression.
304 SSc-ILD patients with no less than three pulmonary function tests within 6-24 months were included. We collected data at baseline and compared differences between SSc patients with and without PF-ILD. Least absolute shrinkage and selection operator regularisation regression and multivariable Cox regression were used to construct the prediction model, which were presented as nomogram and forest plot.
Among the 304 patients with SSc-ILD included, 92.1% were women, with a baseline average age of 46.7 years. Based on the 28 variables preselected by comparison between SSc patients without PF-ILD group (n=150) and patients with SSc PF-ILD group (n=154), a 9-variable prediction model was constructed, including age≥50 years (HR 1.8221, p=0.001), hyperlipidemia (HR 4.0516, p<0.001), smoking history (HR 3.8130, p<0.001), diffused cutaneous SSc subtype (HR 1.9753, p<0.001), arthritis (HR 2.0008, p<0.001), shortness of breath (HR 2.0487, p=0.012), decreased serum immunoglobulin A level (HR 2.3900, p=0.002), positive anti-Scl-70 antibody (HR 1.9573, p=0.016) and usage of cyclophosphamide/mycophenolate mofetil (HR 0.4267, p<0.001). The concordance index after enhanced bootstrap resampling adjustment was 0.874, while the optimism-corrected Brier Score was 0.144 in internal validation.
This study developed the first prediction model for PF-ILD in patients with SSc-ILD, and internal validation showed favourable accuracy and stability of the model.
本研究旨在建立一个可靠的预测系统性硬化症(SSc)-ILD 患者进行性纤维化间质性肺病(PF-ILD)的模型,实现早期风险分层,并有助于更好地预防疾病进展。
纳入了 304 例 SSc-ILD 患者,这些患者在 6-24 个月内至少进行了 3 次肺功能检查。我们在基线时收集数据,并比较了无 PF-ILD 组(n=150)和有 PF-ILD 组(n=154)的 SSc 患者之间的差异。采用最小绝对收缩和选择算子正则化回归和多变量 Cox 回归构建预测模型,并以列线图和森林图的形式呈现。
在纳入的 304 例 SSc-ILD 患者中,92.1%为女性,平均年龄为 46.7 岁。基于无 PF-ILD 组(n=150)和有 PF-ILD 组(n=154)的 SSc 患者之间比较的 28 个预筛选变量,构建了一个 9 变量预测模型,包括年龄≥50 岁(HR 1.8221,p=0.001)、高脂血症(HR 4.0516,p<0.001)、吸烟史(HR 3.8130,p<0.001)、弥漫性皮肤 SSc 亚型(HR 1.9753,p<0.001)、关节炎(HR 2.0008,p<0.001)、呼吸困难(HR 2.0487,p=0.012)、血清免疫球蛋白 A 水平降低(HR 2.3900,p=0.002)、抗 Scl-70 抗体阳性(HR 1.9573,p=0.016)和环磷酰胺/吗替麦考酚酯的使用(HR 0.4267,p<0.001)。经增强 bootstrap 重采样调整后的一致性指数为 0.874,内部验证的优化 Brier 评分为 0.144。
本研究建立了首个预测 SSc-ILD 患者 PF-ILD 的模型,内部验证显示该模型具有良好的准确性和稳定性。