Suppr超能文献

基于 LASSO 选择的术前炎症和营养标志物的非肌肉浸润性膀胱癌预后指数。

A Prognostic Index Derived From LASSO-Selected Preoperative Inflammation and Nutritional Markers for Non-Muscle-Invasive Bladder Cancer.

机构信息

Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.

Ningbo Diagnostic Pathology Center, Ningbo City, Zhejiang Province, China.

出版信息

Clin Genitourin Cancer. 2024 Jun;22(3):102061. doi: 10.1016/j.clgc.2024.02.012. Epub 2024 Feb 29.

Abstract

BACKGROUND

There is an urgent need to identify a robust predictor for BCG response in patients with non-muscle-invasive bladder cancer (NMIBC). We aimed to employ the Lasso regression model for the selection and construction of an index (BCGI) utilizing inflammation and nutrition indicators to predict the response to BCG therapy.

METHODS

After acquiring the ethics approval, we searched the electric medical records in our institution and performed data screening. Then, we developed the BCGI using a Lasso regression model and subsequently evaluated its performance in both the train and internal test datasets through Kaplan-Meier survival curves and Cox regression analysis. Then, we also evaluated the prognostic value of BCGI alongside the EAU2021 model.

RESULTS

The training dataset and internal test dataset contained 295 and 196 patients, respectively. Referring to the Lasso results, BCGI consisted of hemoglobin, albumin, and platelet count, which could significantly predict the recurrence of NMIBC patients who accepted BCG in train (P = .012) and test (P = .004) datasets. The BCGI also exhibited statistically prognostic value in no smoking history, World Health Organization high grade, and T1 subgroups, both in train and test datasets. In multivariable analysis, BCGI exhibited independent prognostic value in train (P = .012) and test (P = .012) datasets. Finally, we constructed a nomogram that consisted of smoking history, T stage, World Health Organization grade, tumor size, and BCGI. Then, BCGI demonstrated significant independent prognostic value in NMIBC patients treated with BCG, a result not observed with the EAU2021 score or classification.

CONCLUSION

Based on the results, we reasonably suggest that BCGI may be a useful predictor for NMIBC patients who accepted BCG. Furthermore, we have demonstrated the efficacy of constructing a prognostic index using clinical factors and a Lasso regression model, a versatile approach applicable to various medical conditions.

摘要

背景

迫切需要确定一种能够准确预测非肌层浸润性膀胱癌(NMIBC)患者卡介苗(BCG)反应的可靠指标。本研究旨在采用 Lasso 回归模型,选择和构建一个利用炎症和营养指标的指数(BCGI),以预测 BCG 治疗反应。

方法

在获得伦理批准后,我们检索了我院的电子病历并进行了数据筛选。然后,我们利用 Lasso 回归模型构建了 BCGI,并通过 Kaplan-Meier 生存曲线和 Cox 回归分析在训练和内部测试数据集评估其性能。此外,我们还评估了 BCGI 与 EAU2021 模型的预后价值。

结果

训练数据集和内部测试数据集分别包含 295 例和 196 例患者。根据 Lasso 结果,BCGI 由血红蛋白、白蛋白和血小板计数组成,可显著预测接受 BCG 治疗的 NMIBC 患者的复发(训练数据集 P =.012,测试数据集 P =.004)。BCGI 在训练和测试数据集中均具有统计学预后价值,且与无吸烟史、世界卫生组织高分级和 T1 亚组相关。多变量分析显示,BCGI 在训练数据集(P =.012)和测试数据集(P =.012)中具有独立的预后价值。最后,我们构建了一个包含吸烟史、T 分期、世界卫生组织分级、肿瘤大小和 BCGI 的列线图。然后,BCGI 在接受 BCG 治疗的 NMIBC 患者中具有显著的独立预后价值,而 EAU2021 评分或分类则没有观察到这种作用。

结论

基于这些结果,我们合理地认为 BCGI 可能是一种预测接受 BCG 治疗的 NMIBC 患者的有用指标。此外,我们还证明了使用临床因素和 Lasso 回归模型构建预后指数的有效性,这是一种适用于各种医疗情况的通用方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验