Wang Songbo, Lin Jiadong, Jia Peng, Xu Tun, Li Xiujuan, Liu Yuezhuangnan, Xu Dan, Bush Stephen J, Meng Deyu, Ye Kai
Department of Gynecology and Obstetrics, Center for Mathematical Medical, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China.
Nat Biotechnol. 2025 Feb;43(2):181-185. doi: 10.1038/s41587-024-02190-7. Epub 2024 Mar 22.
Long-read-based de novo and somatic structural variant (SV) discovery remains challenging, necessitating genomic comparison between samples. We developed SVision-pro, a neural-network-based instance segmentation framework that represents genome-to-genome-level sequencing differences visually and discovers SV comparatively between genomes without any prerequisite for inference models. SVision-pro outperforms state-of-the-art approaches, in particular, the resolving of complex SVs is improved, with low Mendelian error rates, high sensitivity of low-frequency SVs and reduced false-positive rates compared with SV merging approaches.
基于长读长的从头和体细胞结构变异(SV)发现仍然具有挑战性,需要对样本进行基因组比较。我们开发了SVision-pro,这是一个基于神经网络的实例分割框架,它以可视化方式呈现基因组到基因组水平的测序差异,并在无需推理模型任何先决条件的情况下比较基因组间的SV。SVision-pro优于现有方法,特别是在复杂SV的解析方面有所改进,与SV合并方法相比,孟德尔错误率低、低频SV的灵敏度高且假阳性率降低。