Suppr超能文献

解析耐甲氧西林金黄色葡萄球菌生物膜形成的动态过程:从分子信号到纳米治疗进展。

Deciphering the dynamics of methicillin-resistant Staphylococcus aureus biofilm formation: from molecular signaling to nanotherapeutic advances.

机构信息

Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.

Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.

出版信息

Cell Commun Signal. 2024 Mar 22;22(1):188. doi: 10.1186/s12964-024-01511-2.

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) represents a global threat, necessitating the development of effective solutions to combat this emerging superbug. In response to selective pressures within healthcare, community, and livestock settings, MRSA has evolved increased biofilm formation as a multifaceted virulence and defensive mechanism, enabling the bacterium to thrive in harsh conditions. This review discusses the molecular mechanisms contributing to biofilm formation across its developmental stages, hence representing a step forward in developing promising strategies for impeding or eradicating biofilms. During staphylococcal biofilm development, cell wall-anchored proteins attach bacterial cells to biotic or abiotic surfaces; extracellular polymeric substances build scaffolds for biofilm formation; the cidABC operon controls cell lysis within the biofilm, and proteases facilitate dispersal. Beside the three main sequential stages of biofilm formation (attachment, maturation, and dispersal), this review unveils two unique developmental stages in the biofilm formation process for MRSA; multiplication and exodus. We also highlighted the quorum sensing as a cell-to-cell communication process, allowing distant bacterial cells to adapt to the conditions surrounding the bacterial biofilm. In S. aureus, the quorum sensing process is mediated by autoinducing peptides (AIPs) as signaling molecules, with the accessory gene regulator system playing a pivotal role in orchestrating the production of AIPs and various virulence factors. Several quorum inhibitors showed promising anti-virulence and antibiofilm effects that vary in type and function according to the targeted molecule. Disrupting the biofilm architecture and eradicating sessile bacterial cells are crucial steps to prevent colonization on other surfaces or organs. In this context, nanoparticles emerge as efficient carriers for delivering antimicrobial and antibiofilm agents throughout the biofilm architecture. Although metal-based nanoparticles have been previously used in combatting biofilms, its non-degradability and toxicity within the human body presents a real challenge. Therefore, organic nanoparticles in conjunction with quorum inhibitors have been proposed as a promising strategy against biofilms. As nanotherapeutics continue to gain recognition as an antibiofilm strategy, the development of more antibiofilm nanotherapeutics could offer a promising solution to combat biofilm-mediated resistance.

摘要

耐甲氧西林金黄色葡萄球菌(MRSA)是一种全球性威胁,需要开发有效的解决方案来对抗这种新兴的超级细菌。由于在医疗保健、社区和牲畜环境中的选择性压力,MRSA 已经进化出了更强的生物膜形成能力,这是一种多方面的毒力和防御机制,使细菌能够在恶劣的条件下生存。本综述讨论了促成生物膜形成的分子机制,这些机制代表了在开发阻止或消除生物膜的有前途的策略方面向前迈出的一步。在葡萄球菌生物膜形成过程中,细胞壁锚定蛋白将细菌细胞附着在生物或非生物表面上;细胞外聚合物物质为生物膜形成构建支架;cidABC 操纵子控制生物膜内的细胞裂解,蛋白酶促进分散。除了生物膜形成的三个主要连续阶段(附着、成熟和分散)之外,本综述还揭示了耐甲氧西林金黄色葡萄球菌生物膜形成过程中的两个独特的发育阶段;增殖和迁徙。我们还强调了群体感应作为一种细胞间通信过程,使远处的细菌细胞能够适应细菌生物膜周围的环境。在金黄色葡萄球菌中,群体感应过程由自诱导肽(AIPs)作为信号分子介导,辅助基因调节系统在协调 AIPs 和各种毒力因子的产生方面发挥着关键作用。几种群体感应抑制剂表现出有希望的抗毒力和抗生物膜作用,其类型和功能因靶向分子而异。破坏生物膜结构并根除静止细菌细胞是防止在其他表面或器官上定植的关键步骤。在这种情况下,纳米颗粒作为在整个生物膜结构中输送抗菌和抗生物膜剂的有效载体出现。尽管金属基纳米颗粒以前曾被用于对抗生物膜,但它们在人体中的非降解性和毒性仍然是一个真正的挑战。因此,与群体感应抑制剂一起使用的有机纳米颗粒被提出作为对抗生物膜的一种有前途的策略。随着纳米治疗学作为一种抗生物膜策略继续得到认可,开发更多的抗生物膜纳米治疗学可能为对抗生物膜介导的耐药性提供一个有前途的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c45/10958940/af44675c631b/12964_2024_1511_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验