Pandey Poonam, Srivastava Anand
Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India.
Proteins. 2025 Jan;93(1):372-383. doi: 10.1002/prot.26681. Epub 2024 Mar 23.
During the last three decades, antimicrobial peptides (AMPs) have emerged as a promising therapeutic alternative to antibiotics. The approaches for designing AMPs span from experimental trial-and-error methods to synthetic hybrid peptide libraries. To overcome the exceedingly expensive and time-consuming process of designing effective AMPs, many computational and machine-learning tools for AMP prediction have been recently developed. In general, to encode the peptide sequences, featurization relies on approaches based on (a) amino acid (AA) composition, (b) physicochemical properties, (c) sequence similarity, and (d) structural properties. In this work, we present an image-based deep neural network model to predict AMPs, where we are using feature encoding based on Drude polarizable force-field atom types, which can capture the peptide properties more efficiently compared to conventional feature vectors. The proposed prediction model identifies short AMPs (≤30 AA) with promising accuracy and efficiency and can be used as a next-generation screening method for predicting new AMPs. The source code is publicly available at the Figshare server sAMP-VGG16.
在过去三十年中,抗菌肽(AMPs)已成为一种有前景的抗生素替代治疗方法。设计抗菌肽的方法从实验性的试错法到合成杂交肽文库不等。为了克服设计有效抗菌肽极其昂贵且耗时的过程,最近开发了许多用于抗菌肽预测的计算和机器学习工具。一般来说,为了编码肽序列,特征提取依赖于基于以下方面的方法:(a)氨基酸(AA)组成,(b)物理化学性质,(c)序列相似性,以及(d)结构性质。在这项工作中,我们提出了一种基于图像的深度神经网络模型来预测抗菌肽,其中我们使用基于德鲁德可极化力场原子类型的特征编码,与传统特征向量相比,它可以更有效地捕捉肽的性质。所提出的预测模型能够以可观的准确性和效率识别短抗菌肽(≤30个氨基酸),并可作为预测新抗菌肽的下一代筛选方法。源代码可在Figshare服务器sAMP-VGG16上公开获取。