Suppr超能文献

利用深度学习和大脑年龄范式评估法布里病的大脑受累情况。

Assessing brain involvement in Fabry disease with deep learning and the brain-age paradigm.

机构信息

Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy.

NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK.

出版信息

Hum Brain Mapp. 2024 Apr;45(5):e26599. doi: 10.1002/hbm.26599.

Abstract

While neurological manifestations are core features of Fabry disease (FD), quantitative neuroimaging biomarkers allowing to measure brain involvement are lacking. We used deep learning and the brain-age paradigm to assess whether FD patients' brains appear older than normal and to validate brain-predicted age difference (brain-PAD) as a possible disease severity biomarker. MRI scans of FD patients and healthy controls (HCs) from a single Institution were, retrospectively, studied. The Fabry stabilization index (FASTEX) was recorded as a measure of disease severity. Using minimally preprocessed 3D T1-weighted brain scans of healthy subjects from eight publicly available sources (N = 2160; mean age = 33 years [range 4-86]), we trained a model predicting chronological age based on a DenseNet architecture and used it to generate brain-age predictions in the internal cohort. Within a linear modeling framework, brain-PAD was tested for age/sex-adjusted associations with diagnostic group (FD vs. HC), FASTEX score, and both global and voxel-level neuroimaging measures. We studied 52 FD patients (40.6 ± 12.6 years; 28F) and 58 HC (38.4 ± 13.4 years; 28F). The brain-age model achieved accurate out-of-sample performance (mean absolute error = 4.01 years, R = .90). FD patients had significantly higher brain-PAD than HC (estimated marginal means: 3.1 vs. -0.1, p = .01). Brain-PAD was associated with FASTEX score (B = 0.10, p = .02), brain parenchymal fraction (B = -153.50, p = .001), white matter hyperintensities load (B = 0.85, p = .01), and tissue volume reduction throughout the brain. We demonstrated that FD patients' brains appear older than normal. Brain-PAD correlates with FD-related multi-organ damage and is influenced by both global brain volume and white matter hyperintensities, offering a comprehensive biomarker of (neurological) disease severity.

摘要

虽然神经表现是法布瑞病 (FD) 的核心特征,但缺乏能够测量大脑受累情况的定量神经影像学生物标志物。我们使用深度学习和大脑年龄范式来评估 FD 患者的大脑是否比正常大脑更显老,并验证大脑预测年龄差 (brain-PAD) 是否可作为一种疾病严重程度的生物标志物。回顾性地研究了来自单个机构的 FD 患者和健康对照 (HC) 的 MRI 扫描。记录 Fabry 稳定指数 (FASTEX) 作为疾病严重程度的衡量标准。使用来自八个公开来源的健康受试者的最小预处理 3D T1 加权脑扫描(N=2160;平均年龄=33 岁[范围 4-86]),我们基于 DenseNet 架构训练了一个预测年龄的模型,并将其用于内部队列的生成大脑年龄预测。在线性建模框架内,测试 brain-PAD 是否与诊断组(FD 与 HC)、FASTEX 评分以及整体和体素水平神经影像学测量值存在年龄/性别调整后的关联。我们研究了 52 名 FD 患者(40.6±12.6 岁;28 名女性)和 58 名 HC(38.4±13.4 岁;28 名女性)。大脑年龄模型具有出色的样本外性能(平均绝对误差=4.01 岁,R=.90)。FD 患者的 brain-PAD 明显高于 HC(估计边际均值:3.1 与-0.1,p=0.01)。brain-PAD 与 FASTEX 评分相关(B=0.10,p=0.02),与脑实质分数相关(B=-153.50,p=0.001),与白质高信号负荷相关(B=0.85,p=0.01),与大脑内所有组织的体积减少相关。我们证明 FD 患者的大脑比正常大脑更显老。brain-PAD 与 FD 相关的多器官损伤相关,受大脑整体体积和白质高信号的影响,提供了(神经)疾病严重程度的综合生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b08a/10960551/7b81ae1cfbcd/HBM-45-e26599-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验