Suppr超能文献

深度学习加速脑弥散加权磁共振成像的超分辨率处理。

Deep Learning Accelerated Brain Diffusion-Weighted MRI with Super Resolution Processing.

机构信息

Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.

Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.

出版信息

Acad Radiol. 2024 Oct;31(10):4171-4182. doi: 10.1016/j.acra.2024.02.049. Epub 2024 Mar 22.

Abstract

OBJECTIVES

To investigate the clinical feasibility and image quality of accelerated brain diffusion-weighted imaging (DWI) with deep learning image reconstruction and super resolution.

METHODS

85 consecutive patients with clinically indicated MRI at a 3 T scanner were prospectively included. Conventional diffusion-weighted data (c-DWI) with four averages were obtained. Reconstructions of one and two averages, as well as deep learning diffusion-weighted imaging (DL-DWI), were accomplished. Three experienced readers evaluated the acquired data using a 5-point Likert scale regarding overall image quality, overall contrast, diagnostic confidence, occurrence of artefacts and evaluation of the central region, basal ganglia, brainstem, and cerebellum. To assess interrater agreement, Fleiss' kappa (ϰ) was determined. Signal intensity (SI) levels for basal ganglia and the central region were estimated via automated segmentation, and SI values of detected pathologies were measured.

RESULTS

Intracranial pathologies were identified in 35 patients. DL-DWI was significantly superior for all defined parameters, independently from applied averages (p-value <0.001). Optimum image quality was achieved with DL-DWI by utilizing a single average (p-value <0.001), demonstrating very good (80.9%) to excellent image quality (14.5%) in nearly all cases, compared to 12.5% with very good and 0% with excellent image quality for c-MRI (p-value <0.001). Comparable results could be shown for diagnostic confidence. Inter-rater Fleiss' Kappa demonstrated moderate to substantial agreement for virtually all defined parameters, with good accordance, particularly for the assessment of pathologies (p = 0.74). Regarding SI values, no significant difference was found.

CONCLUSION

Ultra-fast diffusion-weighted imaging with super resolution is feasible, resulting in highly accelerated brain imaging while increasing diagnostic image quality.

摘要

目的

研究深度学习图像重建和超分辨率在加速脑弥散加权成像(DWI)中的临床可行性和图像质量。

方法

前瞻性纳入 85 例在 3T 扫描仪行临床检查的患者。获得常规弥散加权数据(c-DWI),采集 4 个平均信号。完成 1 个和 2 个平均信号的重建,以及深度学习弥散加权成像(DL-DWI)。3 位经验丰富的读者使用 5 分李克特量表评估采集的数据,评估整体图像质量、整体对比、诊断信心、伪影发生情况和对中央区域、基底节、脑干和小脑的评估。为了评估组内一致性,采用 Fleiss' κ(ϰ)确定。通过自动分割估计基底节和中央区域的信号强度(SI)水平,并测量检测到的病变的 SI 值。

结果

35 例患者颅内病变得到识别。无论应用的平均信号多少,DL-DWI 在所有定义的参数上均显著更优(p 值<0.001)。利用单平均信号实现了最优的图像质量(p 值<0.001),与 c-MRI 相比,几乎所有病例都获得了非常好(80.9%)到极好(14.5%)的图像质量,而 c-MRI 仅为非常好(12.5%)和极好(0%);DL-DWI 也可获得非常好(80.9%)到极好(14.5%)的诊断信心,与 c-MRI 相比,后者分别为非常好(12.5%)和极好(0%)(p 值<0.001)。组内 Fleiss' κ值的一致性也表明,几乎所有定义的参数都达到了中度至高度一致性,特别是对病变评估的一致性较好(p=0.74)。在 SI 值方面,未发现显著差异。

结论

超分辨率的超快弥散加权成像可行,可在提高诊断图像质量的同时实现高加速脑成像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验