文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习 k 空间到图像重建有助于提高扩散加权成像乳腺 MRI 的空间分辨率和减少扫描时间。

Deep Learning k-Space-to-Image Reconstruction Facilitates High Spatial Resolution and Scan Time Reduction in Diffusion-Weighted Imaging Breast MRI.

机构信息

Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany.

Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany.

出版信息

J Magn Reson Imaging. 2024 Sep;60(3):1190-1200. doi: 10.1002/jmri.29139. Epub 2023 Nov 16.


DOI:10.1002/jmri.29139
PMID:37974498
Abstract

BACKGROUND: For time-consuming diffusion-weighted imaging (DWI) of the breast, deep learning-based imaging acceleration appears particularly promising. PURPOSE: To investigate a combined k-space-to-image reconstruction approach for scan time reduction and improved spatial resolution in breast DWI. STUDY TYPE: Retrospective. POPULATION: 133 women (age 49.7 ± 12.1 years) underwent multiparametric breast MRI. FIELD STRENGTH/SEQUENCE: 3.0T/T2 turbo spin echo, T1 3D gradient echo, DWI (800 and 1600 sec/mm). ASSESSMENT: DWI data were retrospectively processed using deep learning-based k-space-to-image reconstruction (DL-DWI) and an additional super-resolution algorithm (SRDL-DWI). In addition to signal-to-noise ratio and apparent diffusion coefficient (ADC) comparisons among standard, DL- and SRDL-DWI, a range of quantitative similarity (e.g., structural similarity index [SSIM]) and error metrics (e.g., normalized root mean square error [NRMSE], symmetric mean absolute percent error [SMAPE], log accuracy error [LOGAC]) was calculated to analyze structural variations. Subjective image evaluation was performed independently by three radiologists on a seven-point rating scale. STATISTICAL TESTS: Friedman's rank-based analysis of variance with Bonferroni-corrected pairwise post-hoc tests. P < 0.05 was considered significant. RESULTS: Both DL- and SRDL-DWI allowed for a 39% reduction in simulated scan time over standard DWI (5 vs. 3 minutes). The highest image quality ratings were assigned to SRDL-DWI with good interreader agreement (ICC 0.834; 95% confidence interval 0.818-0.848). Irrespective of b-value, both standard and DL-DWI produced superior SNR compared to SRDL-DWI. ADC values were slightly higher in SRDL-DWI (+0.5%) and DL-DWI (+3.4%) than in standard DWI. Structural similarity was excellent between DL-/SRDL-DWI and standard DWI for either b value (SSIM ≥ 0.86). Calculation of error metrics (NRMSE ≤ 0.05, SMAPE ≤ 0.02, and LOGAC ≤ 0.04) supported the assumption of low voxel-wise error. DATA CONCLUSION: Deep learning-based k-space-to-image reconstruction reduces simulated scan time of breast DWI by 39% without influencing structural similarity. Additionally, super-resolution interpolation allows for substantial improvement of subjective image quality. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 1.

摘要

背景:对于耗时的乳腺弥散加权成像(DWI),基于深度学习的成像加速技术似乎特别有前景。

目的:研究一种联合的 k 空间到图像重建方法,用于减少乳腺 DWI 的扫描时间并提高空间分辨率。

研究类型:回顾性。

人群:133 名女性(年龄 49.7±12.1 岁)接受了多参数乳腺 MRI 检查。

磁场强度/序列:3.0T/T2 涡轮自旋回波,T1 3D 梯度回波,DWI(800 和 1600 sec/mm)。

评估:使用基于深度学习的 k 空间到图像重建(DL-DWI)和额外的超分辨率算法(SRDL-DWI)对 DWI 数据进行回顾性处理。除了比较标准、DL 和 SRDL-DWI 之间的信噪比和表观扩散系数(ADC)外,还计算了一系列定量相似性(例如,结构相似性指数[SSIM])和误差指标(例如,归一化均方根误差[NRMSE]、对称平均绝对百分比误差[SMAPE]、对数准确率误差[LOGAC]),以分析结构变化。三位放射科医生独立使用七点评分量表进行主观图像评估。

统计学检验:基于 Friedman 的等级方差分析,并用 Bonferroni 校正的两两事后检验进行比较。P<0.05 被认为具有统计学意义。

结果:与标准 DWI(5 分钟比 3 分钟)相比,DL 和 SRDL-DWI 均可将模拟扫描时间缩短 39%。SRDL-DWI 的图像质量评分最高,具有良好的读者间一致性(ICC 0.834;95%置信区间 0.818-0.848)。无论 b 值如何,标准和 DL-DWI 的 SNR 均优于 SRDL-DWI。SRDL-DWI 和 DL-DWI 的 ADC 值均略高于标准 DWI(分别为+0.5%和+3.4%)。对于任何 b 值,DL-/SRDL-DWI 与标准 DWI 的结构相似性均非常出色(SSIM≥0.86)。误差指标(NRMSE≤0.05,SMAPE≤0.02,LOGAC≤0.04)的计算支持低体素误差的假设。

数据结论:基于深度学习的 k 空间到图像重建可将乳腺 DWI 的模拟扫描时间缩短 39%,而不会影响结构相似性。此外,超分辨率插值可显著提高主观图像质量。

证据水平:4 级技术功效:1 级。

相似文献

[1]
Deep Learning k-Space-to-Image Reconstruction Facilitates High Spatial Resolution and Scan Time Reduction in Diffusion-Weighted Imaging Breast MRI.

J Magn Reson Imaging. 2024-9

[2]
Accelerated Diffusion-Weighted Imaging in 3 T Breast MRI Using a Deep Learning Reconstruction Algorithm With Superresolution Processing: A Prospective Comparative Study.

Invest Radiol. 2023-12-1

[3]
Deep learning-based k-space-to-image reconstruction and super resolution for diffusion-weighted imaging in whole-spine MRI.

Magn Reson Imaging. 2024-1

[4]
Test-retest repeatability and reproducibility of ADC measures by breast DWI: Results from the ACRIN 6698 trial.

J Magn Reson Imaging. 2018-10-22

[5]
Diffusion-Weighted MRI of Breast Cancer: Improved Lesion Visibility and Image Quality Using Synthetic b-Values.

J Magn Reson Imaging. 2019-5-28

[6]
Image Quality and Geometric Distortion of Modern Diffusion-Weighted Imaging Sequences in Magnetic Resonance Imaging of the Prostate.

Invest Radiol. 2018-4

[7]
Diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer.

J Magn Reson Imaging. 2019-2-27

[8]
Shortening Acquisition Time and Improving Image Quality for Pelvic MRI Using Deep Learning Reconstruction for Diffusion-Weighted Imaging at 1.5 T.

Acad Radiol. 2024-3

[9]
Deep Learning Accelerated Brain Diffusion-Weighted MRI with Super Resolution Processing.

Acad Radiol. 2024-10

[10]
Acquisition time reduction of diffusion-weighted liver imaging using deep learning image reconstruction.

Diagn Interv Imaging. 2023-4

引用本文的文献

[1]
Deep learning 3D super-resolution radiomics model based on Gd-enhanced MRI for improving preoperative prediction of HCC pathological grading.

Abdom Radiol (NY). 2025-7-8

[2]
Ultrafast MRI and diffusion-weighted imaging: a review of morphological evaluation and image quality in breast MRI.

Jpn J Radiol. 2025-7-4

[3]
Quantitative image quality metrics enable resource-efficient quality control of clinically applied AI-based reconstructions in MRI.

MAGMA. 2025-5-24

[4]
Assessing Image Quality in Multiplexed Sensitivity-Encoding Diffusion-Weighted Imaging with Deep Learning-Based Reconstruction in Bladder MRI.

Diagnostics (Basel). 2025-2-28

[5]
Optimizing Image Quality with High-Resolution, Deep-Learning-Based Diffusion-Weighted Imaging in Breast Cancer Patients at 1.5 T.

Diagnostics (Basel). 2024-8-10

[6]
AI Applications to Breast MRI: Today and Tomorrow.

J Magn Reson Imaging. 2024-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索