Tan Valerie, Berg Florian, Maleki Hajar
Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstresse 6, 50939, Cologne, Germany.
Center for Molecular Medicine Cologne, CMMC Research Center, Robert-Koch-Str. 21, 50931, Cologne, Germany.
Sci Rep. 2024 Mar 23;14(1):6973. doi: 10.1038/s41598-024-57257-x.
In this study, we have developed novel biomimetic silica composite aerogels and cryogels for the first time, drawing inspiration from the natural diatom's silicification process. Our biomimetic approach involved the modification of tyrosinase-mediated oxidized silk fibroin (SFO) surfaces with polyethyleneimine (PEI). This modification introduced ample amine groups onto the SF polymer, which catalyzed the silicification of the SFO-PEI gel surface with silicic acid. This process emulates the catalytic function of long-chain polyamines and silaffin proteins found in diatoms, resulting in a silica network structure on the primary SFO-PEI network gel's surface. The SFO-PEI gel matrix played a dual role in this process: (1) It provided numerous amine functional groups that directly catalyzed the silicification of silicic acid on the porous structure's exterior surface, without encapsulating the created silica network in the gel. (2) It served as a flexible mechanical support facilitating the creation of the silica network. As a result, the final ceramic composite exhibits a mechanically flexible nature (e.g., cyclic compressibility up to 80% strain), distinguishing it from conventional composite aerogels. By mimicking the diatom's silicification process, we were able to simplify the development of silica-polymer composite aerogels. It eliminates the need for surfactants, multi-step procedures involving solvent exchange, and gel washing. Instead, the reaction occurs under mild conditions, streamlining the composite aerogels fabrication process.
在本研究中,我们首次从天然硅藻的硅化过程中汲取灵感,开发出了新型仿生二氧化硅复合气凝胶和冷冻凝胶。我们的仿生方法涉及用聚乙烯亚胺(PEI)对酪氨酸酶介导的氧化丝素蛋白(SFO)表面进行改性。这种改性在SF聚合物上引入了大量胺基,催化了SFO-PEI凝胶表面与硅酸的硅化反应。该过程模拟了硅藻中发现的长链多胺和硅结合蛋白的催化功能,在初级SFO-PEI网络凝胶的表面形成了二氧化硅网络结构。SFO-PEI凝胶基质在此过程中发挥了双重作用:(1)它提供了大量胺官能团,直接催化多孔结构外表面硅酸的硅化反应,而不会将生成的二氧化硅网络包裹在凝胶中。(2)它作为一种灵活的机械支撑,有助于二氧化硅网络的形成。因此,最终的陶瓷复合材料具有机械柔韧性(例如,循环压缩应变可达80%),这使其有别于传统的复合气凝胶。通过模拟硅藻的硅化过程,我们能够简化二氧化硅-聚合物复合气凝胶的开发。它无需表面活性剂、涉及溶剂交换的多步程序以及凝胶洗涤。相反,反应在温和条件下发生,简化了复合气凝胶的制备过程。