Adiram-Filiba Nurit, Geiger Yasmin, Kumar Santosh, Keinan-Adamsky Keren, Elbaum Rivka, Goobes Gil
Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.
Robert H Smith Faculty of Agriculture, Food and Environment, Robert H Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel.
Acta Biomater. 2020 Aug;112:286-297. doi: 10.1016/j.actbio.2020.05.006. Epub 2020 May 17.
Many life forms generate intricate submicron biosilica structures with various important biological functions. The formation of such structures, from the silicic acid in the waters and in the soil, is thought to be regulated by unique proteins with high repeats of specific amino acids and unusual sidechain modifications. Some silicifying proteins are characterized by high prevalence of basic amino acids in their primary structures. Lysine-rich domains are found, for instance, in diatom silaffin proteins and in the sorghum grass siliplant1 protein. These domains exhibit catalytic activity in silica chain condensation, owing to molecular interactions of the lysine amine groups with the forming mineral. The use of amine chemistry by two very remote organisms has motivated us to seek other molecular biosilicification processes that may be common to the two life forms. In diatom silaffins, domains rich in phosphoserine residues are thought to assist the assembly of silaffin molecules into an organic supra-structure which serves as a template for the silica to precipitate on. This mold, held by salt bridges between serine phosphates and lysine amines, dictates the shape of the silica particles formed. Yet, silica synthesized with the dephosphorylated silaffin in phosphate buffer showed similar morphology to the one prepared with the native protein, suggesting that a defined spatial arrangement of serine phosphates is not required to generate silica with the desired shape. Concurrently, free phosphates enhanced the activity of siliplant1 in silica formation. It is therefore beneficial to characterize the involvement of these anions as co-factors in regulated silicification by functional peptides from the two proteins and to understand whether they play similar molecular role in the mechanism of mineralization. Here we analyze the molecular interactions of free phosphate ions with silica and the silaffin peptide PL12 and separately with silica and siliplant1 peptide SLP1 in the two biomimetic silica products generated by the two peptides. MAS NMR measurements show that the phosphate ions interact with the peptides and at the same time may be forming bonds with the silica mineral. This bridging capability may add another avenue by which the structure of the silica material is influenced. A model for the molecular/ionic interactions at the bio-inorganic interface is described, which may have bearings for the role of phosphorylated residues beyond the function as intermolecular cross linkers or free phosphate ions as co-factors in regulation of silicification. STATEMENT OF SIGNIFICANCE: The manuscript addresses the question how proteins in diatoms and plants regulate the biosilica materials that are produced for various purposes in organisms. It uses preparation of silica in vitro with functional peptide derivatives from a sorghum grass protein and from a diatom silaffin protein separately to show that phosphate ions are important for the control that is achieved by these proteins on the final shape of the silica material produced. It portrays via magnetic resonance spectroscopic measurements, in atomic detail, the interface between atoms in the peptide, atoms on the surface of the silica formed and the phosphate ions that form chemical bonds with atoms on the silica as part of the mechanism of action of these peptides.
许多生命形式会生成具有各种重要生物学功能的复杂亚微米级生物二氧化硅结构。人们认为,这些结构是由水中和土壤中的硅酸形成的,受到具有特定氨基酸高重复序列和不寻常侧链修饰的独特蛋白质的调控。一些硅化蛋白的一级结构中碱性氨基酸含量很高。例如,富含赖氨酸的结构域存在于硅藻硅素蛋白和高粱草的siliplant1蛋白中。由于赖氨酸胺基与正在形成的矿物质之间的分子相互作用,这些结构域在二氧化硅链缩合中表现出催化活性。两种亲缘关系甚远的生物对胺化学的运用促使我们去寻找这两种生命形式可能共有的其他分子生物硅化过程。在硅藻硅素蛋白中,富含磷酸丝氨酸残基的结构域被认为有助于硅素蛋白分子组装成有机超结构,该超结构可作为二氧化硅沉淀的模板。这种由丝氨酸磷酸酯和赖氨酸胺之间的盐桥维系的模板决定了所形成的二氧化硅颗粒的形状。然而,在磷酸盐缓冲液中用去磷酸化的硅素蛋白合成的二氧化硅与用天然蛋白制备的二氧化硅具有相似的形态,这表明生成具有所需形状的二氧化硅并不需要磷酸丝氨酸的特定空间排列。同时,游离磷酸盐增强了siliplant1在二氧化硅形成过程中的活性。因此,通过这两种蛋白质的功能性肽来表征这些阴离子作为共因子在调控硅化过程中的作用,并了解它们在矿化机制中是否发挥相似的分子作用是有益的。在这里,我们分析了游离磷酸根离子与二氧化硅和硅素蛋白肽PL12以及分别与二氧化硅和高粱草肽SLP1在这两种肽生成的两种仿生二氧化硅产物中的分子相互作用。固体核磁共振测量表明,磷酸根离子与肽相互作用,同时可能与二氧化硅矿物形成键。这种桥连能力可能为影响二氧化硅材料结构提供了另一条途径。本文描述了生物无机界面处分子/离子相互作用的模型,该模型可能对磷酸化残基的作用具有重要意义,其作用不仅仅是作为分子间交联剂,或者游离磷酸根离子作为硅化调控中的共因子。重要性声明:本文探讨了硅藻和植物中的蛋白质如何调控生物体内用于各种目的的生物二氧化硅材料这一问题。它分别使用高粱草蛋白和硅藻硅素蛋白的功能性肽衍生物在体外制备二氧化硅,以表明磷酸根离子对于这些蛋白质对所产生的二氧化硅材料最终形状的控制至关重要。它通过磁共振光谱测量,以原子细节描绘了肽中的原子、所形成的二氧化硅表面的原子以及与二氧化硅表面原子形成化学键的磷酸根离子之间的界面,这是这些肽作用机制的一部分。