Brooke Ryan, Qiu Dong, Le Tu, Gibson Mark A, Zhang Duyao, Easton Mark
Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
Sci Rep. 2024 Mar 23;14(1):6975. doi: 10.1038/s41598-024-57498-w.
Successful additive manufacturing involves the optimisation of numerous process parameters that significantly influence product quality and manufacturing success. One commonly used criteria based on a collection of parameters is the global energy distribution (GED). This parameter encapsulates the energy input onto the surface of a build, and is a function of the laser power, laser scanning speed and laser spot size. This study uses machine learning to develop a model for predicting manufacturing layer height and grain size based on GED constituent process parameters. For both layer height and grain size, an artificial neural network (ANN) reduced error over the data set compared with multi linear regression. Layer height predictions using ANN achieved an R of 0.97 and a root mean square error (RMSE) of 0.03 mm, while grain size predictions resulted in an R of 0.85 and an RMSE of 9.68 μm. Grain refinement was observed when reducing laser power and increasing laser scanning speed. This observation was successfully replicated in another α + β Ti alloy. The findings and developed models show why reproducibility is difficult when solely considering GED, as each of the constituent parameters influence these individual responses to varying magnitudes.
成功的增材制造涉及众多工艺参数的优化,这些参数会显著影响产品质量和制造成功率。基于一组参数的一个常用标准是全局能量分布(GED)。该参数概括了输入到构建体表面的能量,并且是激光功率、激光扫描速度和激光光斑尺寸的函数。本研究使用机器学习基于GED组成工艺参数开发了一个预测制造层高和晶粒尺寸的模型。对于层高和晶粒尺寸,与多元线性回归相比,人工神经网络(ANN)降低了数据集中的误差。使用ANN进行的层高预测的R值为0.97,均方根误差(RMSE)为0.03毫米,而晶粒尺寸预测的R值为0.85,RMSE为9.68微米。当降低激光功率并提高激光扫描速度时,观察到晶粒细化。这一观察结果在另一种α + β钛合金中成功得到了重现。研究结果和开发的模型表明了仅考虑GED时再现性为何困难,因为每个组成参数对这些个体响应的影响程度各不相同。