Matyszczak Grzegorz, Plocinski Tomasz, Dluzewski Piotr, Fidler Aleksandra, Jastrzebski Cezariusz, Lawniczak-Jablonska Krystyna, Drzewiecka-Antonik Aleksandra, Wolska Anna, Krawczyk Krzysztof
Department of Chemical Technology, Faculty of Chemistry, Warsaw University of Technology, Noakowski street 3, 00-664 Warsaw, Poland.
Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska street 141A, 02-507 Warsaw, Poland.
Ultrason Sonochem. 2024 May;105:106834. doi: 10.1016/j.ultsonch.2024.106834. Epub 2024 Mar 6.
Our study reports the ultrasound-assisted synthesis of SnS and SnS in the form of nanoparticles using aqueous solutions of respective tin chloride and thioacetamide varying sonication time. The presence of both compounds is confirmed by powder X-ray diffraction, energy-dispersive X-ray spectroscopy, as well as Raman and FT-IR spectroscopic techniques. The existence of nanoparticles is proven by powder X-ray diffraction investigation and by high resolution transmission electron microscopy observations. The size of nanocrystallites are in the range of 3-8 nm and 30 50 nm for SnS, and 1.5-10 nm for SnS. X-ray photoelectron spectroscopy measurements, used to investigate the chemical state of tin and sulphur atoms on the surface of nanoparticles, reveal that they are typically covered with tin on the same oxidation degree as respective bulk compound. Values of optical bandgaps of synthesized nanoparticles, according to the Tauc method, were 2.31, 1.47 and 1.05 eV for SnS (60, 90 and 120 min long synthesis, respectively), and 2.81, 2.78 and 2.70 eV for SnS (60, 90 and 120 min long synthesis, respectively). Obtained nanoparticles were utilized as photo- and sonocatalysts in the process of degradation of model azo-dye molecules by UV-C light or ultrasound. Quantum dots of SnS obtained under sonication lasting 120 min were the best photocatalyst (66.9 % color removal), while quantum dots of SnS obtained under similar sonication time were the best sonocatalyst (85.2 % color removal).
我们的研究报告了使用各自的氯化锡水溶液和硫代乙酰胺,通过改变超声处理时间,以纳米颗粒形式超声辅助合成SnS和SnS₂。通过粉末X射线衍射、能量色散X射线光谱以及拉曼和傅里叶变换红外光谱技术确认了这两种化合物的存在。通过粉末X射线衍射研究和高分辨率透射电子显微镜观察证明了纳米颗粒的存在。对于SnS,纳米微晶的尺寸范围为3 - 8纳米和30 - 50纳米,对于SnS₂为1.5 - 10纳米。用于研究纳米颗粒表面锡和硫原子化学状态的X射线光电子能谱测量表明,它们通常覆盖着与相应块状化合物相同氧化程度的锡。根据Tauc方法,合成纳米颗粒的光学带隙值对于SnS分别为2.31、1.47和1.05电子伏特(合成时间分别为60、90和120分钟),对于SnS₂分别为2.81、2.78和2.70电子伏特(合成时间分别为60、90和120分钟)。所获得的纳米颗粒被用作光催化剂和声催化剂,用于通过UV - C光或超声降解模型偶氮染料分子的过程。在持续120分钟超声处理下获得的SnS量子点是最佳光催化剂(脱色率66.9%),而在类似超声处理时间下获得的SnS₂量子点是最佳声催化剂(脱色率85.2%)。