Suppr超能文献

层状二硒化铋锚定功能化碳纳米纤维的协同激活用于检测环境水样中有害的多菌灵。

Synergistic activation of lamellar bismuth selenide anchored functionalized carbon nanofiber for detecting hazardous carbendazim in environmental water samples.

机构信息

Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan.

Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan; ZhongSun Co., LTD, New Taipei City 220031, Taiwan.

出版信息

Chemosphere. 2024 May;355:141744. doi: 10.1016/j.chemosphere.2024.141744. Epub 2024 Mar 22.

Abstract

Pesticides pollute natural water reservoirs through persistent accumulation. Therefore, their toxicity and degradability are serious issues. Carbendazim (CBZ) is a pesticide used against fungal infections in agricultural crops, and its overexploitation detrimentally affects aquatic ecosystems and organisms. It is necessary to design a logical, efficient, and field-deployable method for monitoring the amount of CBZ in environmental samples. Herein, a nano-engineered bismuth selenide (BiSe)/functionalized carbon nanofiber (f-CNF) nanocomposite was utilized as an electrocatalyst to fabricate an electrochemical sensing platform for CBZ. BiSe/f-CNF exhibited a substantial electroactive surface area, high electrocatalytic activity, and high conductivity owing to the synergistic interaction of BiSe with f-CNF. The structural chemical compositions and morphology of the BiSe/f-CNF nanocomposite were confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). Electrochemical analysis was carried out using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The voltammetry and impedance experiments exposed that the BiSe/f-CNF-modified GCE has attained adequate electrocatalytic function with amended features of electron transportation (R = 35.93 Ω) and improved reaction sites (0.082 cm) accessible by CBZ moiety along with exemplary electrochemical stability (98.92%). The BiSe/f-CNF nanocomposite exhibited higher sensitivity of 0.2974 μA μMcm and a remarkably low limit of detection (LOD) of 1.04 nM at a broad linera range 0.001-100 μM. The practicability of the nanocomposite was tested in environmental (tap and pond water) samples, which supports excellent signal amplification with satisfactory recoveries. Hence, the BiSe/f-CNF nanocomposite is a promising electrode modifier for detecting CBZ.

摘要

农药通过持久性积累污染天然水库。因此,它们的毒性和可降解性是严重的问题。多菌灵(CBZ)是一种用于防治农作物真菌感染的农药,其过度开采对水生生态系统和生物造成了不利影响。因此,需要设计一种逻辑合理、高效且可现场部署的方法来监测环境样品中 CBZ 的含量。在这里,我们利用纳米工程化的硒化铋(BiSe)/功能化碳纳米纤维(f-CNF)纳米复合材料作为电催化剂,构建了用于 CBZ 检测的电化学传感平台。由于 BiSe 与 f-CNF 的协同作用,BiSe/f-CNF 表现出较大的电活性表面积、高电催化活性和高导电性。通过 X 射线衍射(XRD)、X 射线光电子能谱(XPS)和场发射扫描电子显微镜(FESEM)对 BiSe/f-CNF 纳米复合材料的结构化学组成和形貌进行了确认。通过循环伏安法(CV)、电化学阻抗谱(EIS)和差分脉冲伏安法(DPV)进行了电化学分析。伏安法和阻抗实验表明,BiSe/f-CNF 修饰的 GCE 具有足够的电催化功能,并具有改进的电子传输特性(R=35.93 Ω)和改进的反应位点(可与 CBZ 部分结合的 0.082 cm),具有出色的电化学稳定性(98.92%)。BiSe/f-CNF 纳米复合材料表现出更高的灵敏度(0.2974 μA μMcm)和非常低的检测限(1.04 nM),线性范围很宽(0.001-100 μM)。该纳米复合材料在环境(自来水和池塘水)样品中的实用性进行了测试,结果表明该纳米复合材料具有出色的信号放大作用和令人满意的回收率。因此,BiSe/f-CNF 纳米复合材料是一种很有前途的电极修饰材料,可用于检测 CBZ。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验