Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Fuorigrotta, Naples, Italy.
Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, San Sebastián, Spain.
Int J Biol Macromol. 2024 May;266(Pt 1):131022. doi: 10.1016/j.ijbiomac.2024.131022. Epub 2024 Mar 22.
In this work, the adsorption of Candida antarctica B (CALB) and Rhizomucor miehei (RML) lipases into hydrophobic wrinkled silica nanoparticles (WSNs) is investigated. WSNs are hydrophobized by chemical vapor deposition. Both proteins are homogeneously distributed inside the pores of the nanoparticles, as confirmed by Transmission Electron Microscopy and Energy Dispersive X-ray measurements. The maximum enzyme load of CALB is twice that obtained for RML. Fourier Transform Infrared Spectroscopy confirms the preservation of the enzyme secondary structure after immobilization for both enzymes. Adsorption isotherms fit to a Langmuir model, resulting in a binding constant (K) for RML 4.5-fold higher than that for CALB, indicating stronger binding for the former. Kinetic analysis reveals a positive correlation between enzyme load and RML activity unlike CALB where activity decreases along the enzyme load increases. Immobilization allows for enhancing the thermal stability of both lipases. Finally, CALB outperforms RML in the hydrolysis of ethyl-3-hydroxybutyrate. However, immobilized CALB yielded 20 % less 3-HBA than free lipase, while immobilized RML increases 3-fold the 3-HBA yield when compared with the free enzyme. The improved performance of immobilized RML can be explained due to the interfacial hyperactivation undergone by this lipase when immobilized on the superhydrophobic surface of WSNs.
在这项工作中,研究了南极假丝酵母 B(CALB)和米根霉(RML)脂肪酶吸附到疏水性皱状硅纳米粒子(WSNs)中。WSNs 通过化学气相沉积进行疏水处理。通过透射电子显微镜和能量色散 X 射线测量证实,两种蛋白质均匀分布在纳米粒子的孔内。CALB 的最大酶负载量是 RML 的两倍。傅里叶变换红外光谱证实两种酶固定化后其酶二级结构得以保留。吸附等温线符合 Langmuir 模型,结果表明 RML 的结合常数(K)比 CALB 高 4.5 倍,表明前者的结合更强。动力学分析表明,与 CALB 不同,酶负载与 RML 活性呈正相关,而 CALB 的活性随着酶负载的增加而降低。固定化可以提高两种脂肪酶的热稳定性。最后,CALB 在水解乙基-3-羟基丁酸方面优于 RML。然而,与游离酶相比,固定化 CALB 的 3-HBA 产率降低了 20%,而固定化 RML 的 3-HBA 产率则增加了 3 倍。固定化 RML 性能的提高可以解释为这种脂肪酶在 WSNs 的超疏水表面上固定化时经历的界面超活化。