Suppr超能文献

利用方法 R 从基因组信息估算遗传力。

Estimation of heritability with genomic information by method R.

机构信息

Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA.

出版信息

J Anim Breed Genet. 2024 Sep;141(5):550-558. doi: 10.1111/jbg.12863. Epub 2024 Mar 25.

Abstract

Estimating heritabilities with large genomic models by established methods such as restricted maximum likelihood (REML) or Bayesian via Gibbs sampling is computationally expensive. Alternatively, heritability can be estimated indirectly by method R and by maximum predictivity, referred to as MaxPred here, at a much lower computing cost. By method R, the heritability used for predictions with whole and partial data is considered the best estimate when the predictions based on partial data are unbiased relative to those with the complete data. By MaxPred, the heritability estimate is the one that maximizes predictivity. This study compared heritability estimation with genomic information using average information REML (AI-REML), method R and MaxPred. A simulated population was generated with ten generations of 5000 animals each and an effective population size of 80. Each animal had one record for a trait with a heritability of 0.3, a phenotypic variance of 10.0 and was genotyped at 50 k SNP. In method R, the heritability estimate is found when the expectation of a regression coefficient is equal to one. The regression is the EBV of selection candidates calculated with the whole dataset regressed on the EBV of candidates calculated from a partial dataset. In this study, we used the GBLUP framework and therefore, GEBV was calculated. The partial dataset was created by removing the last generation of phenotypes. Predictivity was defined as the correlation between the adjusted phenotypes of the selection candidates and their GEBV calculated from the partial data. We estimated the heritability for populations that included between three and 10 generations. In every scenario, predictivity increased as more data was used and was the highest at the simulated heritability. However, the predictivity for all data subsets and all heritabilities compared did not differ more than 0.01, suggesting MaxPred is not the best indication for heritability estimation. For the whole dataset, the heritability was estimated as 0.30 ± 0.01, 0.26 ± 0.01 and 0.30 ± 0.04 for AI-REML without genomics, AI-REML with genomics and method R with genomics, respectively. Heritability estimation with genomics by method R reduced timing by 83%, implying a reduction in computing time from 9.5 to 1.6 h, on average, compared to AI-REML with genomics. Method R has the potential to estimate heritabilities with large genomic information at a low cost when many generations of animals are present; however, the standard error can be high when only a few iterations are used.

摘要

使用已建立的方法(如受限极大似然法(REML)或贝叶斯通过 Gibbs 抽样)估计具有大型基因组模型的遗传力计算成本很高。或者,可以通过方法 R 和最大预测性(这里称为 MaxPred)间接估计遗传力,其计算成本要低得多。通过方法 R,当基于部分数据的预测相对于完整数据的预测无偏时,用于全数据和部分数据预测的遗传力被认为是最佳估计。通过 MaxPred,遗传力估计是最大化预测性的估计。本研究比较了使用全信息 REML(AI-REML)、方法 R 和 MaxPred 进行基因组信息遗传力估计。使用具有 10 代、每代 5000 只动物和 80 个有效群体大小的模拟群体。每个动物的一个记录用于具有 0.3 的遗传力、10.0 的表型方差的性状,并用 50kSNP 进行了基因分型。在方法 R 中,当回归系数的期望等于 1 时,就可以找到遗传力估计值。回归是基于全数据集计算的候选者 EBV 对基于部分数据集计算的候选者 EBV 的回归。在这项研究中,我们使用了 GBLUP 框架,因此计算了 GEBV。通过从最后一代表型中删除部分数据集来创建部分数据集。预测性被定义为选择候选者的调整后表型与其从部分数据计算的 GEBV 之间的相关性。我们估计了包含 3 到 10 代的群体的遗传力。在每种情况下,随着数据量的增加,预测性都会增加,并且在模拟遗传力下最高。然而,所有数据子集的预测性与所有遗传力相比都没有差异超过 0.01,这表明 MaxPred 不是遗传力估计的最佳指标。对于整个数据集,分别在没有基因组学的 AI-REML、有基因组学的 AI-REML 和有基因组学的方法 R 中,遗传力估计值为 0.30±0.01、0.26±0.01 和 0.30±0.04。通过方法 R 进行的基因组学遗传力估计将时间减少了 83%,这意味着与具有基因组学的 AI-REML 相比,计算时间平均减少了 9.5 到 1.6 小时。当存在多代动物时,方法 R 具有以低成本估计具有大型基因组信息的遗传力的潜力;但是,当使用的迭代次数较少时,标准误差可能会很高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验