Luo Qiong, Luo Jing, Wang Xixi, Gan Sifei
Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.
Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
J Pain Res. 2024 Mar 20;17:1243-1256. doi: 10.2147/JPR.S442765. eCollection 2024.
Functional connectivity between the prelimbic medial prefrontal cortex (PL-mPFC) and the core of the nucleus accumbens (NAc core) predicts pain chronification. Inhibiting the apoptosis of oligodendrocytes in the PL-mPFC prevents fentanyl-induced hyperalgesia in rats. However, the role of prefrontal cortex (PFC)-NAc projections in opioid-induced hyperalgesia (OIH) remains unclear. Herein, we explored the role of the PL-NAc core circuit in fentanyl-induced hyperalgesia.
An OIH rat model was established, and patch-clamp recording, immunofluorescence, optogenetics, and chemogenetic methods were employed for neuron excitability detection and nociceptive behavioral assessment.
Our results showed decreased activity of the right PL-mPFC layer V output neurons in rats with OIH. Similarly, the excitability of the NAc core neurons receiving glutamatergic projections from the PL-mPFC decreased in OIH rats, observed by the light-evoked excitatory postsynaptic currents/light-excited inhibitory postsynaptic currents ratio (eEPSC/eIPSC ratio). Fentanyl-induced hyperalgesia was reversed by optogenetic activation of the PL-NAc core pathway, and chemogenetic suppression of this pathway induced hyperalgesia in control (saline-treated) rats. However, behavioral hyperalgesia was not aggravated by this chemogenetic suppression in OIH (fentanyl-treated) rats.
Our findings indicate that inactivation of the PL-NAc core pathway may be a cause of OIH and restoring the activity of this pathway may provide a strategy for OIH treatment.
前边缘内侧前额叶皮质(PL-mPFC)与伏隔核核心(NAc核心)之间的功能连接可预测疼痛慢性化。抑制PL-mPFC中少突胶质细胞的凋亡可预防大鼠芬太尼诱导的痛觉过敏。然而,前额叶皮质(PFC)-NAc投射在阿片类药物诱导的痛觉过敏(OIH)中的作用仍不清楚。在此,我们探讨了PL-NAc核心回路在芬太尼诱导的痛觉过敏中的作用。
建立OIH大鼠模型,采用膜片钳记录、免疫荧光、光遗传学和化学遗传学方法进行神经元兴奋性检测和伤害性行为评估。
我们的结果显示,OIH大鼠右侧PL-mPFC第V层输出神经元的活性降低。同样,通过光诱发兴奋性突触后电流/光激发抑制性突触后电流比值(eEPSC/eIPSC比值)观察到,接受来自PL-mPFC谷氨酸能投射的NAc核心神经元的兴奋性在OIH大鼠中降低。光遗传学激活PL-NAc核心通路可逆转芬太尼诱导的痛觉过敏,而化学遗传学抑制该通路可在对照(盐水处理)大鼠中诱发痛觉过敏。然而,在OIH(芬太尼处理)大鼠中,这种化学遗传学抑制并未加重行为性痛觉过敏。
我们的研究结果表明,PL-NAc核心通路失活可能是OIH的一个原因,恢复该通路的活性可能为OIH治疗提供一种策略。