Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského 62, Hradec Králové 500 03, Czech Republic.
Institute of Botany, The Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic.
Ann Bot. 2024 Jun 7;134(1):151-162. doi: 10.1093/aob/mcae049.
Understanding anatomical variations across plant phylogenies and environmental gradients is vital for comprehending plant evolution and adaptation. Previous studies on tropical woody plants have paid limited attention to quantitative differences in major xylem tissues, which serve specific roles in mechanical support (fibres), carbohydrate storage and radial conduction (radial parenchyma, rays), wood capacitance (axial parenchyma) and water transport (vessels). To address this gap, we investigate xylem fractions in 173 tropical tree species spanning 134 genera and 53 families along a 2200-m elevational gradient on Mount Cameroon, West Africa.
We determined how elevation, stem height and wood density affect interspecific differences in vessel, fibre, and specific axial (AP) and radial (RP) parenchyma fractions. We focus on quantifying distinct subcategories of homogeneous or heterogeneous rays and apotracheal, paratracheal and banded axial parenchyma.
Elevation-related cooling correlated with reduced AP fractions and vessel diameters, while fibre fractions increased. Lower elevations exhibited elevated AP fractions due to abundant paratracheal and wide-banded parenchyma in tall trees from coastal and lowland forests. Vasicentric and aliform AP were predominantly associated with greater tree height and wider vessels, which might help cope with high evaporative demands via elastic wood capacitance. In contrast, montane trees featured a higher fibre proportion, scarce axial parenchyma, smaller vessel diameters and higher vessel densities. The lack of AP in montane trees was often compensated for by extended uniseriate ray sections with upright or squared ray cells or the presence of living fibres.
Elevation gradient influenced specific xylem fractions, with lower elevations showing elevated AP due to abundant paratracheal and wide-banded parenchyma, securing greater vessel-to-parenchyma connectivity and lower embolism risk. Montane trees featured a higher fibre proportion and smaller vessel diameters, which may aid survival under greater environmental seasonality and fire risk.
理解植物系统发育和环境梯度中的解剖变异对于理解植物进化和适应至关重要。先前对热带木本植物的研究较少关注主要木质部组织的定量差异,这些组织在机械支撑(纤维)、碳水化合物储存和径向传导(径向薄壁组织、射线)、木材电容(轴向薄壁组织)和水分运输(导管)方面发挥着特定作用。为了解决这一差距,我们在西非喀麦隆山海拔 2200 米的梯度上对 134 属 53 科的 173 种热带树种的木质部进行了研究。
我们确定了海拔、茎高和木材密度如何影响种间导管、纤维以及特定轴向(AP)和径向(RP)薄壁组织分数的差异。我们专注于量化同质或异质射线以及离管、傍管和带状轴向薄壁组织的不同亚类。
与冷却相关的海拔升高与 AP 分数和导管直径的降低有关,而纤维分数增加。较低的海拔由于来自沿海和低地森林的高大树木中丰富的傍管和宽带状薄壁组织而表现出较高的 AP 分数。维管束和翼状 AP 主要与更大的树高和更宽的导管相关,这可能有助于通过弹性木材电容来应对高蒸发需求。相比之下,山地树木具有更高的纤维比例、稀少的轴向薄壁组织、更小的导管直径和更高的导管密度。山地树木缺乏 AP 组织通常通过延长具有直立或方形射线细胞的单列射线部分或存在活纤维来补偿。
海拔梯度影响特定的木质部分数,较低的海拔由于丰富的傍管和宽带状薄壁组织而表现出较高的 AP,从而确保更大的导管-薄壁组织连接性和更低的栓塞风险。山地树木具有更高的纤维比例和更小的导管直径,这可能有助于在更大的环境季节性和火灾风险下生存。