IEEE/ACM Trans Comput Biol Bioinform. 2024 Sep-Oct;21(5):1299-1310. doi: 10.1109/TCBB.2024.3380410. Epub 2024 Oct 9.
Cryo-EM in single particle analysis is known to have low SNR and requires to utilize several frames of the same particle sample to restore one high-quality image for visualizing that particle. However, the low SNR of cryo-EM movie and motion caused by beam striking make the task very challenging. Video enhancement algorithms in computer vision shed new light on tackling such tasks by utilizing deep neural networks. However, they are designed for natural images with high SNR. Meanwhile, the lack of ground truth in cryo-EM movie seems to be one major limiting factor of the progress. Hence, we present a synthetic cryo-EM movie generation pipeline, which can produce realistic diverse cryo-EM movie datasets with low-SNR movie frames and multiple ground truth values. Then we propose a deep spatio-temporal network (DST-Net) for cryo-EM movie frame enhancement trained on our synthetic data. Spatial and temporal features are first extracted from each frame. Spatio-temporal fusion and high-resolution re-constructor are designed to obtain the enhanced output. For evaluation, we train our model on seven synthetic cryo-EM movie datasets and infer on real cryo-EM data. The experimental results show that DST-Net can achieve better enhancement performance both quantitatively and qualitatively compared with others.
在单颗粒分析中,冷冻电镜的信噪比通常较低,需要利用同一样品的多个粒子图像来重建一个高质量的图像,以便可视化该粒子。然而,冷冻电镜电影的低 SNR 和光束撞击引起的运动使得这项任务极具挑战性。计算机视觉中的视频增强算法通过利用深度神经网络为解决此类任务带来了新的思路。然而,这些算法是为具有高 SNR 的自然图像设计的。同时,冷冻电镜电影中缺乏真实数据似乎是该领域进展的一个主要限制因素。因此,我们提出了一种合成冷冻电镜电影生成管道,可以生成具有低 SNR 电影帧和多个真实数据值的逼真多样的冷冻电镜电影数据集。然后,我们提出了一种基于合成数据训练的用于冷冻电镜电影帧增强的深度时空网络(DST-Net)。首先从每一帧中提取空间和时间特征。设计时空融合和高分辨率重构器以获得增强的输出。为了进行评估,我们在七个合成冷冻电镜电影数据集上训练我们的模型,并在真实的冷冻电镜数据上进行推断。实验结果表明,与其他方法相比,DST-Net 在定量和定性方面都能实现更好的增强性能。