DNA Medicine Institute (DMI), Bedford, MA, USA.
rHEALTH, Bedford, MA, USA.
Nat Commun. 2024 Mar 25;15(1):2634. doi: 10.1038/s41467-024-46483-6.
Real-time lab analysis is needed to support clinical decision making and research on human missions to the Moon and Mars. Powerful laboratory instruments, such as flow cytometers, are generally too cumbersome for spaceflight. Here, we show that scant test samples can be measured in microgravity, by a trained astronaut, using a miniature cytometry-based analyzer, the rHEALTH ONE, modified specifically for spaceflight. The base device addresses critical spaceflight requirements including minimal resource utilization and alignment-free optics for surviving rocket launch. To fully enable reduced gravity operation onboard the space station, we incorporated bubble-free fluidics, electromagnetic shielding, and gravity-independent sample introduction. We show microvolume flow cytometry from 10 μL sample drops, with data from five simultaneous channels using 10 μs bin intervals during each sample run, yielding an average of 72 million raw data points in approximately 2 min. We demonstrate the device measures each test sample repeatably, including correct identification of a sample that degraded in transit to the International Space Station. This approach can be utilized to further our understanding of spaceflight biology and provide immediate, actionable diagnostic information for management of astronaut health without the need for Earth-dependent analysis.
实时实验室分析对于支持临床决策和人类探月和火星任务的研究是必要的。强大的实验室仪器,如流式细胞仪,通常对于太空飞行来说过于笨重。在这里,我们展示了经过训练的宇航员可以使用经过专门改装用于太空飞行的微型基于细胞术的分析仪 rHEALTH ONE 在微重力下测量极少的测试样本。该基础设备满足了关键的太空飞行要求,包括最小资源利用和用于在火箭发射中幸存的无对准光学。为了在空间站上完全实现降低重力操作,我们结合了无气泡流路、电磁屏蔽和与重力无关的样品引入。我们展示了来自 10 μL 样品滴的微体积流式细胞术,在每个样品运行期间使用 10 μs -bin 间隔从五个同时通道获取数据,在大约 2 分钟内产生平均 7200 万个原始数据点。我们证明该设备可以重复测量每个测试样本,包括正确识别在运往国际空间站过程中降解的样本。这种方法可以用于进一步了解太空生物学,并提供即时的、可操作的诊断信息,用于管理宇航员的健康,而无需依赖地球进行分析。