Suppr超能文献

机器学习方法在预测五岁以下儿童死亡率中的应用:对 2018 年尼日利亚人口健康调查数据集的分析。

Application of machine learning methods for predicting under-five mortality: analysis of Nigerian demographic health survey 2018 dataset.

机构信息

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, 4001, Durban, South Africa.

出版信息

BMC Med Inform Decis Mak. 2024 Mar 25;24(1):86. doi: 10.1186/s12911-024-02476-5.

Abstract

BACKGROUND

Under-five mortality remains a significant public health issue in developing countries. This study aimed to assess the effectiveness of various machine learning algorithms in predicting under-five mortality in Nigeria and identify the most relevant predictors.

METHODS

The study used nationally representative data from the 2018 Nigeria Demographic and Health Survey. The study evaluated the performance of the machine learning models such as the artificial neural network, k-nearest neighbourhood, Support Vector Machine, Naïve Bayes, Random Forest, and Logistic Regression using the true positive rate, false positive rate, accuracy, precision, F-measure, Matthew's correlation coefficient, and the Area Under the Receiver Operating Characteristics.

RESULTS

The study found that machine learning models can accurately predict under-five mortality, with the Random Forest and Artificial Neural Network algorithms emerging as the best models, both achieving an accuracy of 89.47% and an AUROC of 96%. The results show that under-five mortality rates vary significantly across different characteristics, with wealth index, maternal education, antenatal visits, place of delivery, employment status of the woman, number of children ever born, and region found to be the top determinants of under-five mortality in Nigeria.

CONCLUSIONS

The findings suggest that machine learning models can be useful in predicting U5M in Nigeria with high accuracy. The study emphasizes the importance of addressing social, economic, and demographic disparities among the population in Nigeria. The study's findings can inform policymakers and health workers about developing targeted interventions to reduce under-five mortality in Nigeria.

摘要

背景

五岁以下儿童死亡率仍是发展中国家面临的重大公共卫生问题。本研究旨在评估各种机器学习算法在预测尼日利亚五岁以下儿童死亡率方面的有效性,并确定最相关的预测因素。

方法

本研究使用了来自 2018 年尼日利亚人口与健康调查的全国代表性数据。研究评估了机器学习模型的性能,如人工神经网络、k-最近邻、支持向量机、朴素贝叶斯、随机森林和逻辑回归,使用真阳性率、假阳性率、准确性、精度、F 度量、马修相关系数和接收器操作特征曲线下的面积。

结果

研究发现,机器学习模型可以准确预测五岁以下儿童死亡率,随机森林和人工神经网络算法表现最佳,准确性均达到 89.47%,AUROC 达到 96%。结果表明,五岁以下儿童死亡率在不同特征之间存在显著差异,财富指数、产妇教育、产前检查、分娩地点、妇女就业状况、儿童出生人数和地区是尼日利亚五岁以下儿童死亡率的主要决定因素。

结论

研究结果表明,机器学习模型可以在预测尼日利亚 U5M 方面具有很高的准确性。本研究强调了在尼日利亚解决人口的社会、经济和人口差异的重要性。研究结果可以为尼日利亚的政策制定者和卫生工作者提供信息,以便制定有针对性的干预措施,降低尼日利亚五岁以下儿童死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdb/10962196/d24eadc1d307/12911_2024_2476_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验