Koren Sergey, Bao Zhigui, Guarracino Andrea, Ou Shujun, Goodwin Sara, Jenike Katharine M, Lucas Julian, McNulty Brandy, Park Jimin, Rautiainen Mikko, Rhie Arang, Roelofs Dick, Schneiders Harrie, Vrijenhoek Ilse, Nijbroek Koen, Ware Doreen, Schatz Michael C, Garrison Erik, Huang Sanwen, McCombie W Richard, Miga Karen H, Wittenberg Alexander H J, Phillippy Adam M
Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, BadenWürttemberg, Germany.
bioRxiv. 2024 Mar 19:2024.03.15.585294. doi: 10.1101/2024.03.15.585294.
The combination of ultra-long Oxford Nanopore (ONT) sequencing reads with long, accurate PacBio HiFi reads has enabled the completion of a human genome and spurred similar efforts to complete the genomes of many other species. However, this approach for complete, "telomere-to-telomere" genome assembly relies on multiple sequencing platforms, limiting its accessibility. ONT "Duplex" sequencing reads, where both strands of the DNA are read to improve quality, promise high per-base accuracy. To evaluate this new data type, we generated ONT Duplex data for three widely-studied genomes: human HG002, Heinz 1706 (tomato), and B73 (maize). For the diploid, heterozygous HG002 genome, we also used "Pore-C" chromatin contact mapping to completely phase the haplotypes. We found the accuracy of Duplex data to be similar to HiFi sequencing, but with read lengths tens of kilobases longer, and the Pore-C data to be compatible with existing diploid assembly algorithms. This combination of read length and accuracy enables the construction of a high-quality initial assembly, which can then be further resolved using the ultra-long reads, and finally phased into chromosome-scale haplotypes with Pore-C. The resulting assemblies have a base accuracy exceeding 99.999% (Q50) and near-perfect continuity, with most chromosomes assembled as single contigs. We conclude that ONT sequencing is a viable alternative to HiFi sequencing for genome assembly, and has the potential to provide a single-instrument solution for the reconstruction of complete genomes.
超长的牛津纳米孔(ONT)测序读段与长且准确的PacBio HiFi读段相结合,使得人类基因组得以完成,并推动了对许多其他物种基因组进行完整测序的类似努力。然而,这种用于完整的“端粒到端粒”基因组组装的方法依赖于多个测序平台,限制了其可及性。ONT“双链”测序读段通过读取DNA的两条链来提高质量,有望实现高碱基准确度。为了评估这种新的数据类型,我们针对三个广泛研究的基因组生成了ONT双链数据:人类HG002、海因茨1706(番茄)和B73(玉米)。对于二倍体杂合HG002基因组,我们还使用了“Pore-C”染色质接触图谱来完全区分单倍型。我们发现双链数据的准确度与HiFi测序相似,但读长要长数十千碱基,并且Pore-C数据与现有的二倍体组装算法兼容。这种读长和准确度的结合能够构建高质量的初始组装,然后可以使用超长读段进一步解析,最后通过Pore-C将其区分成染色体规模的单倍型。所得组装体具有超过99.999%(Q50)的碱基准确度和近乎完美的连续性,大多数染色体被组装为单个重叠群。我们得出结论,ONT测序是基因组组装中HiFi测序的可行替代方法,并且有潜力为完整基因组的重建提供单一仪器解决方案。