Suppr超能文献

天气与城市:机器学习在预测和归因细颗粒空气质量方面的应用,考虑气象和城市决定因素。

Weather and the City: Machine Learning for Predicting and Attributing Fine Scale Air Quality to Meteorological and Urban Determinants.

机构信息

Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States.

Louvain Research Institute of Landscape, Architecture, Built Environment, UCLouvain, Place du Levant 1, Ottignies-Louvain-la-Neuve 1348, Belgium.

出版信息

Environ Sci Technol. 2024 Apr 9;58(14):6313-6325. doi: 10.1021/acs.est.4c00783. Epub 2024 Mar 26.

Abstract

Urban air quality persists as a global concern, with critical health implications. This study employs a combination of machine learning (gradient boosting regression, GBR) and spatial analysis to better understand the key drivers behind air pollution and its prediction and mitigation strategies. Focusing on New York City as a representative urban area, we investigate the interplay between urban characteristics and weather factors, showing that urban features, including traffic-related parameters and urban morphology, emerge as crucial predictors for pollutants closely associated with vehicular emissions, such as elemental carbon (EC) and nitrogen oxides (NO). Conversely, pollutants with secondary formation pathways (e.g., PM) or stemming from nontraffic sources (e.g., sulfur dioxide, SO) are predominantly influenced by meteorological conditions, particularly wind speed and maximum daily temperature. Urban characteristics are shown to act over spatial scales of 500 × 500 m, which is thus the footprint needed to effectively capture the impact of urban form, fabric, and function. Our spatial predictive model, needing only meteorological and urban inputs, achieves promising results with mean absolute errors ranging from 8 to 32% when using full-year data. Our approach also yields good performance when applied to the temporal mapping of spatial pollutant variability. Our findings highlight the interacting roles of urban characteristics and weather conditions and can inform urban planning, design, and policy.

摘要

城市空气质量仍然是一个全球性的问题,对健康有着重大影响。本研究采用机器学习(梯度提升回归,GBR)和空间分析相结合的方法,以更好地理解空气污染背后的关键驱动因素及其预测和缓解策略。本研究以纽约市为代表的城市地区为例,研究了城市特征与天气因素之间的相互作用,结果表明,城市特征,包括与交通相关的参数和城市形态,是与车辆排放密切相关的污染物(如元素碳(EC)和氮氧化物(NO))的关键预测因素。相反,具有二次形成途径(如 PM)或源自非交通源(如二氧化硫,SO)的污染物主要受气象条件影响,特别是风速和日最高温度。城市特征的影响范围在 500×500m 的空间尺度上,这是有效捕捉城市形态、结构和功能影响所需的足迹。我们的空间预测模型仅需要气象和城市输入,当使用全年数据时,其平均绝对误差范围在 8%至 32%之间,取得了有前景的结果。当应用于空间污染物变化的时间映射时,我们的方法也能取得良好的效果。我们的研究结果强调了城市特征和天气条件的相互作用,并为城市规划、设计和政策提供了参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验