Suppr超能文献

应用机器学习和深度学习技术建立德黑兰大都市市区空气污染与气象参数之间关联模型。

Application of machine learning and deep learning techniques in modeling the associations between air pollution and meteorological parameters in urban areas of tehran metropolis.

机构信息

Department of Natural Geography, Faculty of Earth Sciences, University of Shahid Beheshti, Tehran, Iran.

Department of Forestry, Faculty of Natural Resources, University of Tarbiat Modarres, Mazandaran, Iran.

出版信息

Environ Monit Assess. 2024 Oct 1;196(10):994. doi: 10.1007/s10661-024-13162-4.

Abstract

Tehran, the most crowded city in Iran, suffers from severe air pollution, particularly during the cold months. This research endeavored to examine the statistical relationships between criteria air pollutants (CO, NO, SO, O, PM, and PM) and meteorological elements (temperature, rainfall, wind speed, relative humidity, air pressure, sunshine hours, solar radiation, and cloudiness), as well as assess and compare the efficacy of six different algorithms (multiple linear regression (MLR), generalized additive model (GAM), classification and regression trees (CART), random forest (RF), gradient boosting machine (GBM), and deep learning (DL)) in modeling pollutants and climatic factors responsible for variations in Tehran's air pollution levels from 2001 to 2021 using R 4.3.2 software. The results of this study showed that O was strongly affected by weather conditions, while other pollutants were mainly influenced by each other than by meteorological parameters and more extensive research is required to pinpoint the precise impact of human activity on these pollutant levels in Tehran. Also based on the predictive model performance evaluation and concerning the principle of parsimony, in half of the cases, the MLR outperformed other models, despite its seeming simplicity and principal assumptions dependence. In other situations, the GAM was a good substitute.

摘要

德黑兰是伊朗人口最密集的城市,饱受严重的空气污染之苦,尤其是在寒冷的月份。本研究旨在检验空气质量污染物(CO、NO、SO、O、PM 和 PM)与气象要素(温度、降雨量、风速、相对湿度、气压、日照时间、太阳辐射和云量)之间的统计关系,并评估和比较六种不同算法(多元线性回归(MLR)、广义加性模型(GAM)、分类回归树(CART)、随机森林(RF)、梯度提升机(GBM)和深度学习(DL))在建模污染物和气候因素方面的效果,这些因素导致 2001 年至 2021 年德黑兰空气污染水平的变化,使用 R 4.3.2 软件。本研究结果表明,O 受天气条件影响较大,而其他污染物主要受彼此影响,而非气象参数影响,需要更广泛的研究来确定人类活动对这些污染物水平的精确影响。此外,基于预测模型性能评估和简约原则,在一半的情况下,MLR 优于其他模型,尽管它看似简单且依赖主要假设。在其他情况下,GAM 是一个很好的替代品。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验