Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
Chempluschem. 2024 Jul;89(7):e202300760. doi: 10.1002/cplu.202300760. Epub 2024 Apr 18.
Nucleic acids are considered as promising materials for developing exquisite nanostructures from one to three dimensions. The advances of DNA nanotechnology facilitate ingenious design of DNA nanostructures with diverse shapes and sizes. Especially, the algebraic topological framework nucleic acids (ATFNAs) are functional DNA nanostructures that engineer guest molecules (e. g., nucleic acids, proteins, small molecules, and nanoparticles) stoichiometrically and spatially. The intrinsic precise properties and tailorable functionalities of ATFNAs hold great promise for biological applications, such as cell recognition and immunotherapy. This Perspective highlights the concept and development of precisely assembled ATFNAs, and outlines the new frontiers and opportunities for exploiting the structural advantages of ATFNAs for biological applications.
核酸被认为是从一维到三维构建精致纳米结构的有前途的材料。DNA 纳米技术的进步促进了具有各种形状和大小的 DNA 纳米结构的巧妙设计。特别是,代数拓扑框架核酸(ATFNA)是功能 DNA 纳米结构,可以化学计量和空间地工程化客体分子(例如核酸、蛋白质、小分子和纳米颗粒)。ATFNA 的内在精确性质和可定制功能为生物应用(例如细胞识别和免疫疗法)提供了巨大的应用前景。本观点重点介绍了精确组装的 ATFNA 的概念和发展,并概述了利用 ATFNA 的结构优势进行生物应用的新前沿和机会。
Chempluschem. 2024-7
J Am Chem Soc. 2018-12-14
ACS Sens. 2018-5-14
Curr Top Med Chem. 2022
Methods Mol Biol. 2023
Trends Biotechnol. 2014-6
Methods Mol Biol. 2023
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011-11-30
Biomater Sci. 2015-7
Nanoscale. 2022-12-15